Grain and nanoparticle coarsening of an ultrafine structured Cu–5vol.%Al2O3 nanocomposite during isochronal annealing

Journal of Alloys and Compounds - Tập 642 - Trang 83-91 - 2015
Dengshan Zhou1,2, Deliang Zhang1, Charlie Kong3, Paul Munroe3, Rob Torrens2
1State Key Laboratory for Metal Matrix Materials, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2Waikato Centre for Advanced Materials, School of Engineering, The University of Waikato, Private Bag 3105, Hamilton, New Zealand
3Electron Microscope Unit, The University of New South Wales, Sydney 2052, Australia

Tài liệu tham khảo

Nadkarni, 1984, High conductivity copper and aluminum alloys, 77 Rajkovic, 2010, Effects of copper and Al2O3 particles on characteristics of Cu–Al2O3 composites, Mater. Des., 31, 1962, 10.1016/j.matdes.2009.10.037 Tian, 2006, Microstructure and properties at elevated temperature of a nano-Al2O3 particles dispersion-strengthened copper base composite, Mater. Sci. Eng. A, 435, 705, 10.1016/j.msea.2006.07.129 Chookajorn, 2012, Design of stable nanocrystalline alloys, Science, 337, 951, 10.1126/science.1224737 Darling, 2013, Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum, J. Alloys Comp., 573, 142, 10.1016/j.jallcom.2013.03.177 Schuh, 2003, The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni, Acta Mater., 51, 431, 10.1016/S1359-6454(02)00427-5 Naser, 1997, Grain stabilisation of copper with nanoscaled Al2O3-powder, Mater. Sci. Eng. A, 234, 470, 10.1016/S0921-5093(97)00263-3 Trojanová, 1999, Thermal stability of copper reinforced by nanoscaled and microscaled alumina particles investigated by internal friction, Scripta Mater., 40, 1063, 10.1016/S1359-6462(99)00070-6 Afshar, 2008, Abnormal grain growth in alumina dispersion-strengthened copper produced by an internal oxidation process, Scripta Mater., 58, 966, 10.1016/j.scriptamat.2008.01.029 Lebedev, 1996, Thermal stability of submicrocrystalline copper and Cu:ZrO2 composite, Scripta Mater., 35, 1077, 10.1016/1359-6462(96)00261-8 Čížek, 2008, Influence of ceramic nanoparticles on thermal stability of ultra fine grained copper, Acta Phys. Pol. A, 113, 1285, 10.12693/APhysPolA.113.1285 Ďurišin, 2004, Effect of the MgO particles on the nanocrystalline copper grain stability, Mater. Lett., 58, 3796, 10.1016/j.matlet.2004.07.031 Zhou, 2014, Thermal stability of the nanostructure of mechanically milled Cu–5vol%Al2O3 nanocomposite powder particles, J. Mater. Res., 29, 996, 10.1557/jmr.2014.79 Ranjbar Motlagh, 2014, Softening behaviour of alumina reinforced copper processed by equal channel angular pressing, Mater. Sci. Technol., 30, 220, 10.1179/1743284713Y.0000000337 Perez, 1994, Copper–Al2O3 composites prepared by reactive spray deposition, Scripta Metall., 31, 231, 10.1016/0956-716X(94)90275-5 Biselli, 1994, Mechanical alloying of high-strength copper alloys containing TiB2 and Al2O3 dispersoid particles, Scripta Metall., 30, 1327, 10.1016/0956-716X(94)90267-4 Williamson, 1953, X-ray line broadening from filed aluminium and wolfram, Acta Metall., 1, 22, 10.1016/0001-6160(53)90006-6 Williamson, 1956, Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum, Philos. Mag., 1, 34, 10.1080/14786435608238074 Mukhtar, 2010 Čížek, 2002, Thermal stability of ultrafine grained copper, Phys. Rev. B, 65, 094106, 10.1103/PhysRevB.65.094106 Jiang, 2000, Microstructural evolution, microhardness and thermal stability of HPT-processed Cu, Mater. Sci. Eng. A, 290, 128, 10.1016/S0921-5093(00)00919-9 Zhilyaev, 2002, Thermal stability and microstructural evolution in ultrafine-grained nickel after equal-channel angular pressing (ECAP), Metall. Mater. Trans. A, 33, 1865, 10.1007/s11661-002-0197-z Koch, 2013, High temperature stabilization of nanocrystalline grain size: thermodynamic versus kinetic strategies, J. Mater. Res., 28, 1785, 10.1557/jmr.2012.429 Luton, 1988, Cryomilling of nano-phase dispersion strengthened aluminum, Mater. Res. Soc. Symp. Proc., 132, 79, 10.1557/PROC-132-79 Perez, 1996, Thermal stability of nanocrystalline Fe–10wt.%Al produced by cryogenic mechanical alloying, Nanostruct. Mater., 7, 565, 10.1016/0965-9773(96)00020-7 Tellkamp, 2001, Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy, Metall. Mater. Trans. A, 32, 2335, 10.1007/s11661-001-0207-6 Smith, 1948, Grains, phases, and interfaces: an interpretation of microstructure, AIME, 175, 15 Burke, 1949, Some factors affecting the rate of grain growth in metals, AIME, 180, 73 Manohar, 1999, Grain growth in particle-containing metastable microstructures, JMNM, 2, 455, 10.4028/www.scientific.net/JMNM.2-6.455 Manohar, 1998, Five decades of the Zener equation, ISIJ Int., 38, 913, 10.2355/isijinternational.38.913 Rios, 1987, Overview no. 62: a theory for grain boundary pinning by particles, Acta Metall., 35, 2805, 10.1016/0001-6160(87)90280-X Meyers, 2009 Bacon, 1973, The effect of dislocation self-interaction on the orowan stress, Philos. Mag., 28, 1241, 10.1080/14786437308227997 Ye, 2005, A tri-modal aluminum based composite with super-high strength, Scripta Mater., 53, 481, 10.1016/j.scriptamat.2005.05.004 Atwater, 2013, The stabilization of nanocrystalline copper by zirconium, Mater. Sci. Eng. A, 559, 250, 10.1016/j.msea.2012.08.092 Moon, 2008, Orowan strengthening effect on the nanoindentation hardness of the ferrite matrix in microalloyed steels, Mater. Sci. Eng. A, 487, 552, 10.1016/j.msea.2007.10.046 Benson, 2001, On the effect of grain size on yield stress: extension into nanocrystalline domain, Mater. Sci. Eng. A, 319–321, 854, 10.1016/S0921-5093(00)02029-3 Balogh, 2008, Influence of stacking-fault energy on microstructural characteristics of ultrafine-grain copper and copper–zinc alloys, Acta Mater., 56, 809, 10.1016/j.actamat.2007.10.053 Hansen, 1982, The strain and grain size dependence of the flow stress of copper, Acta Metall., 30, 411, 10.1016/0001-6160(82)90221-8 Redsten, 1995, Mechanical properties and microstructure of cast oxide-dispersion-strengthened aluminum, Mater. Sci. Eng. A, 201, 88, 10.1016/0921-5093(94)09741-0 Besterci, 1994, Structure analysis of dispersion strengthening, Scripta Metall., 30, 1145, 10.1016/0956-716X(94)90329-8