Computer-aided colorectal tumor classification in NBI endoscopy using local features
Tài liệu tham khảo
Aabakken, L., 2009. Reporting and Image Management. Wiley-Blackwell. chapter 20. Colonoscopy: Principles and Practice, 2 edition.
Al-Kadi, 2010, Texture measures combination for improved meningioma classification of histopathological images, Pattern Recognition, 43, 2043, 10.1016/j.patcog.2010.01.005
Allwein, 2000, Reducing multiclass to binary: a unifying approach for margin classifiers, Journal of Machine Learning Research, 113
Amores, 2010, Vocabulary-based approaches for multiple-instance data: a comparative study, International Conference on Pattern Recognition, 4246, 10.1109/ICPR.2010.1032
André, 2011, Content-based retrieval in endomicroscopy: toward an efficient smart atlas for clinical diagnosis
André, 2011, Retrieval evaluation and distance learning from perceived similarity between endomicroscopy videos, 297
André, 2011, A smart atlas for endomicroscopy using automated video retrieval, Medical Image Analysis, 15, 460, 10.1016/j.media.2011.02.003
André, B., Vercauteren, T., Buchner, A.M., Wallace, M.B., Ayache, N., 2012. Learning semantic and visual similarity for endomicroscopy video retrieval. IEEE Transactions on Medical Imaging 31, 1276–1288.
André, 2009, Introducing space and time in local feature-based endomicroscopic image retrieval, 18
Bank, 1970, Dissecting microscopy of rectal mucosa, The Lancet, 295, 64, 10.1016/S0140-6736(70)91847-7
Barabouti, 2005, Clinical staging of rectal cancer, Seminars in Colon and Rectal Surgery, 16, 104, 10.1053/j.scrs.2005.09.002
Bay, 2008, Speeded-up robust features (SURF), Computer Vision and Image Understanding, 110, 346, 10.1016/j.cviu.2007.09.014
Bay, 2006, SURF: speeded up robust features, vol. 3951, 404
Beets, 2010, Pretherapy imaging of rectal cancers: ERUS or MRI?, Surgical Oncology Clinics of North America, 19, 733, 10.1016/j.soc.2010.07.004
Bishop, 2006
Bosch, A., Zisserman, A., Muoz, X., 2007. Image classification using random forests and ferns. In: IEEE 11th International Conference on Computer Vision, 2007. ICCV 2007, pp. 1–8.
Breier, M., Gross, S., Behrens, A., Stehle, T., Aach, T., 2011. Active contours for localizing polyps in colonoscopic NBI image data. In: Proc. of Medical Imaging 2011: Computer-Aided Diagnosis, pp. 79632M–79632M-10.
Campbell, W., Sturim, D., Reynolds, D., Solomonoff, A., 2006. SVM based speaker verification using a GMM supervector kernel and NAP variability compensation. In: 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings, p. I.
Cancer research UK, 2011. CancerSstats, Incidence 2008 – UK. <http://info.cancerresearchuk.org/cancerstats/incidence>.
Canon, 2008, Is there still a role for double-contrast barium enema examination?, Clinical Gastroenterology and Hepatology, 6, 389, 10.1016/j.cgh.2007.12.051
Chang, 2009, Comparative study of conventional colonoscopy, magnifying chromoendoscopy, and magnifying narrow-band imaging systems in the differential diagnosis of small colonic polyps between trainee and experienced endoscopist, International Journal of Colorectal Disease, 24, 1413, 10.1007/s00384-009-0760-9
Chang, 2011, LIBSVM: a library for support vector machines, ACM Transactions on Intelligent Systems and Technology, 2, 27:1, 10.1145/1961189.1961199
Chapelle, 1999, Support vector machines for histogram-based image classification, IEEE Transactions on Neural Networks, 10, 1055, 10.1109/72.788646
Chum, 2007, Scalable near identical image and shot detection, 549
Classen, M., Tytgat, G.N.J., Lightdale, C.J., 2010. Gastroenterological Endoscopy. Thieme Medical Publisher, second ed.
Cristianini, 2002, Latent semantic kernels, Journal of Intelligent Information Systems, 18, 127, 10.1023/A:1013625426931
Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C., 2004. Visual categorization with bags of keypoints, in: European Conference on Computer Vision (ECCV2004) Workshop on Statistical Learning in Computer Vision, pp. 59–74.
Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for human detection, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, pp. 886–893.
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L., 2009. ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 248–255.
Farquhar, J., Szedmak, S., Meng, H., Shawe-Taylor, J., 2005. Improving bag-of-keypoints image categorisation: generative models and pdf-kernels. Technical report, Department of Electronics and Computer Science, University of Southampton.
Fei-Fei, L., Perona, P., 2005. A bayesian hierarchical model for learning natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, pp. 524–531.
Fowlkes, 2004, Spectral grouping using the Nyström method, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 214, 10.1109/TPAMI.2004.1262185
Fu, 2004, Chromoendoscopy using indigo carmine dye spraying with magnifying observation is the most reliable method for differential diagnosis between non-neoplastic and neoplastic colorectal lesions: a prospective study, Endoscopy, 36, 1089, 10.1055/s-2004-826039
Gaddam, 2010, New trends in endoscopic imaging, Gastroenterology & Endoscopy News, 8
van Gemert, 2008, Kernel codebooks for scene categorization, vol. 5304, 696
Gershman, 2012
Gloor, 1986, The adenoma–carcinoma sequence of the colon and rectum, Sozial- und Praventivmedizin/Social and Preventive Medicine, 31, 74, 10.1007/BF02091586
Gono, 2004, Appearance of enhanced tissue features in narrow-band endoscopic imaging, Journal of Biomedical Optics, 9, 568, 10.1117/1.1695563
Gono, 2003, Endoscopic observation of tissue by narrowband illumination, Optical Review, 10, 211, 10.1007/s10043-003-0211-8
Gopalswamy, 2000, Digital rectal examination as a part of colorectal cancer screening in hospitalized veterans, The American Journal of Gastroenterology, 95, 2534, 10.1111/j.1572-0241.2000.02786.x
Graf, 2001, Normalization in support vector machines, vol. 2191, 277
Grauman, K., Darrell, T., 2005. The pyramid match kernel: discriminative classification with sets of image features, in: Tenth IEEE International Conference on Computer Vision, 2005. ICCV 2005, vol. 2, pp. 1458–1465.
Gross, S., Kennel, M., Stehle, T., Wulff, J., Tischendorf, J., Trautwein, C., Aach, T., 2009a. Polyp segmentation in NBI colonoscopy. In: Meinzer, H.P., Deserno, T.M., Handels, H., Tolxdorff, T., Brauer, W. (Eds.), Bildverarbeitung fur die Medizin 2009. Springer, Berlin/Heidelberg, pp. 252–256 (Informatik aktuell).
Gross, S., Stehle, T., Behrens, A., Auer, R., Aach, T., Winograd, R., Trautwein, C., Tischendorf, J., 2009b. A comparison of blood vessel features and local binary patterns for colorectal polyp classification. In: Proc. of Medical Imaging 2008: Computer-Aided Diagnosis, SPIE. pp. 72602Q–72602Q-8.
Gunduz-Demir, 2010, Automatic segmentation of colon glands using object-graphs, Medical Image Analysis, 14, 1, 10.1016/j.media.2009.09.001
Haasdonk, 2004, Learning with distance substitution kernels, vol. 3175, 220
Häfner, 2009, Improving pit-pattern classification of endoscopy images by a combination of experts, vol. 5761, 247
Häfner, 2009, Combining gaussian markov random fields with the discrete wavelet transform for endoscopic image classification, 177
Häfner, M., Gangl, A., Liedlgruber, M., Uhl, A., Vecsei, A., Wrba, F., 2009c. Pit pattern classification using extended local binary patterns. In: 9th International Conference on Information Technology and Applications in Biomedicine, 2009. ITAB 2009, pp. 1–4.
Häfner, M., Gangl, A., Liedlgruber, M., Uhl, A., Vécsei, A., Wrba, F., 2009d. Pit pattern classification using multichannel features and multiclassification. In: Exarchos, T., Papadopoulos, A., Fotiadis, D. (Eds.), Handbook of Research on Advanced Techniques in Diagnostic Imaging and Biomedical Applications. IGI Global, Hershey, PA, USA, pp. 335–350.
Häfner, 2010, Classification of endoscopic images using Delaunay triangulation-based edge features, vol. 6112, 131
Häfner, M., Gangl, A., Liedlgruber, M., Uhl, A., Vecsei, A., Wrba, F., 2010b. Endoscopic image classification using edge-based features. In: Proc. of 20th International Conference on Pattern Recognition (ICPR2010), IEEE, pp. 2724–2727.
Häfner, M., Kendlbacher, C., Mann, W., Taferl, W., Wrba, F., Gangl, A., Vecsei, A., Uhl, A., 2006. Pit pattern classification of zoom-endoscopic colon images using histogram techniques. In: Signal Processing Symposium, 2006. NORSIG 2006. Proceedings of the 7th Nordic, pp. 58–61.
Häfner, 2009, Feature extraction from multi-directional multi-resolution image transformations for the classification of zoom-endoscopy images, Pattern Analysis & Applications, 12, 407, 10.1007/s10044-008-0136-8
Häfner, 2009, Computer-assisted pit-pattern classification in different wavelet domains for supporting dignity assessment of colonic polyps, Pattern Recognition, 42, 1180, 10.1016/j.patcog.2008.07.012
Häfner, M., Kwitt, R., Wrba, F., Gangl, A., Vecsei, A., Uhl, A., 2008. One-against-one classification for zoom-endoscopy images. In: 4th IET International Conference on Advances in Medical, Signal and Information Processing, 2008. MEDSIP 2008, pp. 1–4.
Halligan, 2007, CT colonography: results and limitations, European Journal of Radiology, 61, 400, 10.1016/j.ejrad.2006.07.030
Harris, C., Stephens, M., 1988. A combined corner and edge detector. In: Proc. of 4th Alvey Vision Conference (AVC1988), pp. 147–151.
Hastie, 2009
Health Statistics and Informatics Department, World Health Organization, 2008. Global Burden of Disease: 2004 update. <http://www.who.int/evidence/bod>.
Heitman, 2008, Nonmedical costs of colorectal cancer screening with the fecal occult blood test and colonoscopy, Clinical Gastroenterology and Hepatology, 6, 912, 10.1016/j.cgh.2008.03.006
Herve, N., Boujemaa, N., Houle, M.E., 2009. Document description: what works for images should also work for text? In: Multimedia Content Access: Algorithms and Systems III, SPIE, pp. 72550B–72550B-12.
Higashi, 2010, Diagnostic accuracy of narrow-band imaging and pit pattern analysis significantly improved for less-experienced endoscopists after an expanded training program, Gastrointestinal Endoscopy, 72, 127, 10.1016/j.gie.2010.01.054
Hirai, 2011, Endoscopic image matching for reconstructing the 3-D structure of the intestines, Medical Imaging Technology, 29, 36
Hirata, 2007, Evaluation of microvessels in colorectal tumors by narrow band imaging magnification, Gastrointestinal Endoscopy, 66, 945, 10.1016/j.gie.2007.05.053
Hirata, 2007, Magnifying endoscopy with narrow band imaging for diagnosis of colorectal tumors, Gastrointestinal Endoscopy, 65, 988, 10.1016/j.gie.2006.07.046
Hofmann, T., 1999. Probabilistic latent semantic analysis. In: 15th Uncertainty in Artificial Intelligence, pp. 289–296.
Hsu, C.W., Chang, C.C., Lin, C.J., 2003. A practical guide to support vector classification. <http://www.csie.ntu.edu.tw/cjlin/papers/guide/guide.pdf>.
Hsu, 2002, A comparison of methods for multiclass support vector machines, IEEE Transactions on Neural Networks, 13, 415, 10.1109/72.991427
Huang, 2006, Generalized Bradley–Terry models and multi-class probability estimates, Journal of Machine Learning Research, 4
Ignjatovic, 2011, What is the most reliable imaging modality for small colonic polyp characterization? Study of white-light, autofluorescence, and narrow-band imaging, Endoscopy, 43, 94, 10.1055/s-0030-1256074
Ikematsu, 2010, Efficacy of capillary pattern type IIIA/IIIB by magnifying narrow band imaging for estimating depth of invasion of early colorectal neoplasms, BMC Gastroenterology, 10, 33, 10.1186/1471-230X-10-33
Imai, 2001, Problems and clinical significance of v type pit pattern diagnosis: report on round-table consensus meeting, Early Colorectal Cancer, 5, 595
Jenkinson, 2010, Colorectal cancer screening – methodology, The Surgeon, 8, 164, 10.1016/j.surge.2009.10.015
Joachims, 1998, Text categorization with support vector machines: learning with many relevant features, vol. 1398, 137
John C. Platt, Nello Cristianini, J.S.T., 2000. Large margin dags for multiclass classification. In: Advances in Neural Information Processing Systems 12 (NIPS1999), pp. 547–553.
John Shawe-Taylor, 2000
Johnson, 2004, Comparison of the relative sensitivity of ct colonography and double-contrast barium enema for screen detection of colorectal polyps, Clinical Gastroenterology and Hepatology, 2, 314, 10.1016/S1542-3565(04)00061-8
Joutou, T., Yanai, K., 2009. A food image recognition system with multiple kernel learning. In: 16th IEEE International Conference on Image Processing (ICIP), 2009, pp. 285–288.
Jurie, F., Triggs, B., 2005. Creating efficient codebooks for visual recognition. In: Tenth IEEE International Conference on Computer Vision, 2005. ICCV 2005, pp. 604–610.
Kanao, 2008, Clinical significance of type VI pit pattern subclassification in determining the depth of invasion of colorectal neoplasms, World Journal of Gastroenterology, 14, 211, 10.3748/wjg.14.211
Kanao, 2009, Narrow-band imaging magnification predicts the histology and invasion depth of colorectal tumors, Gastrointestinal Endoscopy, 69, 631, 10.1016/j.gie.2008.08.028
Karkanis, 2003, Computer-aided tumor detection in endoscopic video using color wavelet features, IEEE Transactions on Information Technology in Biomedicine, 7, 141, 10.1109/TITB.2003.813794
Karl, 2008, Improved diagnosis of colorectal cancer using a combination of fecal occult blood and novel fecal protein markers, Clinical Gastroenterology and Hepatology, 6, 1122, 10.1016/j.cgh.2008.04.021
Ke, Y., Sukthankar, R., 2004. PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, pp. II-506–II-513.
Kiesslich, 2007, Technology insight: confocal laser endoscopy for in vivo diagnosis of colorectal cancer, Nature Reviews Clinical Oncology, 4, 480, 10.1038/ncponc0881
Koenderink, 1984, The structure of images, Biological Cybernetics, 50, 363, 10.1007/BF00336961
Kosaka, 1975, Fundamental study on the diminutive polyps of the colon by mucosal stain and dissecting microscope, Journal of Coloproctology, 28, 218, 10.3862/jcoloproctology.28.218
Kudo, 1994, Colorectal tumours and pit pattern, Journal of Clinical Pathology, 47, 880, 10.1136/jcp.47.10.880
Kudo, 1996, Diagnosis of colorectal tumorous lesions by magnifying endoscopy, Gastrointestinal Endoscopy, 44, 8, 10.1016/S0016-5107(96)70222-5
Kwitt, R., Uhl, A., 2007a. Modeling the marginal distributions of complex wavelet coefficient magnitudes for the classification of Zoom-Endoscopy images. In: Proc. of ICCV2007, IEEE, pp. 1–8.
Kwitt, 2007, Multi-directional multi-resolution transforms for zoom-endoscopy image classification, vol. 45, 35
Kwitt, R., Uhl, A., 2008. Color eigen-subband features for endoscopy image classification. In: IEEE International Conference on Acoustics, Speech and Signal Processing, 2008. ICASSP 2008, pp. 589–592.
Kwitt, R., Uhl, A., Häfner, M., Gangl, A., Wrba, F., Vecsei, A., 2010. Predicting the histology of colorectal lesions in a probabilistic framework. In: Proc. of CVPR2010 Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA2010), IEEE, pp. 103–110.
Lazebnik, S., Schmid, C., Ponce, J., 2006. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2169–2178.
Lee, Y., Lin, Y., Wahba, G., 2001. Multicategory Support Vector Machines. Technical Report. Department of Statistics, University of Madison.
Lin, 2011, Positron emission tomography and colorectal cancer, Critical Reviews in Oncology/Hematology, 77, 30, 10.1016/j.critrevonc.2010.04.011
Lindeberg, 1994, Scale-space theory: a basic tool for analyzing structures at different scales, Journal of Applied Statistics, 21, 225, 10.1080/757582976
Lodhi, 2002, Text classification using string kernels, J. Mach. Learn. Res., 2, 419
Lowe, D.G., 1999. Object recognition from local scale-invariant features. IEEE International Conference on Computer Vision, vol. 2, p. 1150.
Lowe, 2004, Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, 60, 91, 10.1023/B:VISI.0000029664.99615.94
Machida, 2004, Narrow-Band imaging in the diagnosis of colorectal mucosal lesions: a pilot study, Endoscopy, 36, 1094, 10.1055/s-2004-826040
Maji, S., Berg, A., Malik, J., 2008. Classification using intersection kernel support vector machines is efficient. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008, pp. 1–8.
Maroulis, 2003, CoLD: a versatile detection system for colorectal lesions in endoscopy video-frames, Computer Methods and Programs in Biomedicine, 70, 151, 10.1016/S0169-2607(02)00007-X
Matsumoto, 2010, Outcome of endoscopic submucosal dissection for colorectal tumors accompanied by fibrosis, Scandinavian Journal of Gastroenterology, 45, 1329, 10.3109/00365521.2010.495416
Matsushima, C., Yamauchi, Y., Yamashita, T., Fujiyoshi, H., 2010. Object detection using relational binarized HOG feature and binary selection by real adaboost. In: Proc. of the 13th Meeting on Image Recognition and Understanding (MIRU2010), pp. 18–25.
Mayinger, 2006, Evaluation of sensitivity and inter- and intra-observer variability in the detection of intestinal metaplasia and dysplasia in Barrett’s esophagus with enhanced magnification endoscopy, Scandinavian Journal of Gastroenterology, 41, 349, 10.1080/00365520510024016
Meining, 2004, Inter- and intra-observer variability of magnification chromoendoscopy for detecting specialized intestinal metaplasia at the gastroesophageal junction, Endoscopy, 36, 160, 10.1055/s-2004-814183
Mikolajczyk, K., Schmid, C., 2003. A performance evaluation of local descriptors. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings 2003, pp. II-257–II-263.
Mikolajczyk, 2004, Scale & affine invariant interest point detectors, International Journal of Computer Vision, 60, 63, 10.1023/B:VISI.0000027790.02288.f2
Mikolajczyk, 2005, A performance evaluation of local descriptors, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 1615, 10.1109/TPAMI.2005.188
Milgram, J., Cheriet, M., Sabourin, R., 2006. One against one or one against all: Which one is better for handwriting recognition with SVMs? In: Proc. of 10th International Workshop on Frontiers in Handwriting Recognition.
Ministry of Health, Labour and Welfare, Japan, 2009. Vital Statistics in Japan – The latest trends. <http://www.mhlw.go.jp/english/database/db-hw/vs01.html>.
Müller, 2009, Overview of the ImageCLEFmed 2008 medical image retrieval task, vol. 5706, 512
Müller, 2004, A review of content-based image retrieval systems in medical applications – clinical benefits and future directions, International Journal of Medical Informatics, 73, 1, 10.1016/j.ijmedinf.2003.11.024
Nakayama, H., Harada, T., Kuniyoshi, Y., 2010. Global gaussian approach for scene categorization using information geometry. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2336–2343.
National Cancer Institute, US National Institutes of Health, 2010. Colon and Rectal Cancer. <http://www.cancer.gov/cancertopics/types/colon-and-rectal>.
Nister, D., Stewenius, H., 2006. Scalable recognition with a vocabulary tree. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2161–2168.
Nowak, 2006, Sampling strategies for bag-of-features image classification, vol. 3954, 490
Oba, 2010, Characterization of colorectal tumors using narrow-band imaging magnification: combined diagnosis with both pit pattern and microvessel features, Scandinavian Journal of Gastroenterology, 45, 1084, 10.3109/00365521003734166
Oba, 2011, Current status of narrow-band imaging magnifying colonoscopy for colorectal neoplasia in japan, Digestion, 83, 167, 10.1159/000321807
Oh, 2007, Informative frame classification for endoscopy video, Medical Image Analysis, 11, 110, 10.1016/j.media.2006.10.003
Onji, 2011, Quantitative analysis of colorectal lesions observed on magnified endoscopy images, Journal of Gastroenterology, 46, 1382, 10.1007/s00535-011-0459-x
Oto, 2002, Virtual endoscopy, European Journal of Radiology, 42, 231, 10.1016/S0720-048X(02)00032-3
Padhani, 1999, Advances in imaging of colorectal cancer, Critical Reviews in Oncology/Hematology, 30, 189, 10.1016/S1040-8428(98)00048-1
Panossian, 2011, State of the art in the endoscopic imaging and ablation of Barrett’s esophagus, Digestive and Liver Disease, 43, 365, 10.1016/j.dld.2011.01.011
Perronnin, 2008, Universal and adapted vocabularies for generic visual categorization, IEEE Transactions on Pattern Analysis and Machine Intelligence, 30, 1243, 10.1109/TPAMI.2007.70755
Perronnin, 2006, Adapted vocabularies for generic visual categorization, vol. 3954, 464
Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A., 2007. Object retrieval with large vocabularies and fast spatial matching. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR ’07, pp. 1–8.
Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A., 2008. Lost in quantization: improving particular object retrieval in large scale image databases. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008, pp. 1–8.
Qiu, 2008, Objects over the world, vol. 5353, 296
Quelhas, P., Odobez, J.M., 2007. Multi-level local descriptor quantization for bag-of-visterms image representation. In: Proceedings of the 6th ACM international conference on Image and Video Retrieval, ACM, New York, NY, USA, pp. 242–249.
Raghavendra, 2010, Differentiating adenomas from hyperplastic colorectal polyps: narrow-band imaging can be learned in 20 minutes, Gastrointestinal Endoscopy, 72, 572, 10.1016/j.gie.2010.03.1124
Rex, 2011, The american society for gastrointestinal endoscopy PIVI (Preservation and incorporation of valuable endoscopic innovations) on real-time endoscopic assessment of the histology of diminutive colorectal polyps, Gastrointestinal Endoscopy, 73, 419, 10.1016/j.gie.2011.01.023
Saito, 2011, Imaging by magnifying endoscopy with NBI implicates the remnant capillary network as an indication for endoscopic resection in early colon cancer, International Journal of Surgical Oncology, 2011, 1, 10.1155/2011/242608
Saito, 2007, Endoscopic treatment of large superficial colorectal tumors: a case series of 200 endoscopic submucosal dissections (with video), Gastrointestinal Endoscopy, 66, 966, 10.1016/j.gie.2007.02.053
Sanford, 2009, Fecal occult blood testing, Clinics in Laboratory Medicine, 29, 523, 10.1016/j.cll.2009.06.008
Sano, 2006, Magnifying observation of microvascular architecture of colorectal lesions using a narrow-band imaging system, Digestive Endoscopy, 18, S44, 10.1111/j.1443-1661.2006.00621.x
Sano, 2009, Meshed capillary vessels by use of narrow-band imaging for differential diagnosis of small colorectal polyps, Gastrointestinal Endoscopy, 69, 278, 10.1016/j.gie.2008.04.066
Schmid, 1997, Local grayvalue invariants for image retrieval, IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, 530, 10.1109/34.589215
Schölkopf, B., Smola, A.J., 2002. Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge, Mass. [u.a.].
Shin, 2010, MR colonography and MR enterography, Gastrointestinal Endoscopy Clinics of North America, 20, 323, 10.1016/j.giec.2010.02.010
Shotton, J., Johnson, M., Cipolla, R., 2008. Semantic texton forests for image categorization and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008, pp. 1–8.
Sivic, J., Zisserman, A., 2003. Video Google: a text retrieval approach to object matching in videos. In: Ninth IEEE International Conference on Computer Vision, 2003. Proceedings, pp. 1470–1477.
Sonnenburg, 2006, Large scale multiple kernel learning, Journal of Machine Learning Research, 1531
Stehle, T., Auer, R., Gross, S., Behrens, A., Wulff, J., Aach, T., Winograd, R., Trautwein, C., Tischendorf, J., 2009. Classification of colon polyps in NBI endoscopy using vascularization features. In: Proc. of Medical Imaging 2009: Computer-Aided Diagnosis, SPIE, pp. 72602S–72602S-12.
Steinwart, 2008
Sundaram, 2008, Colon polyp detection using smoothed shape operators: preliminary results, Medical Image Analysis, 12, 99, 10.1016/j.media.2007.08.001
Swain, 1991, Color indexing, International Journal of Computer Vision, 7, 11, 10.1007/BF00130487
Takemura, 2012, Computer-aided system for predicting the histology of colorectal tumors by using narrow-band imaging magnifying colonoscopy (with video), Gastrointestinal Endoscopy, 75, 179, 10.1016/j.gie.2011.08.051
Takemura, 2010, Quantitative analysis and development of a computer-aided system for identification of regular pit patterns of colorectal lesions, Gastrointestinal Endoscopy, 72, 1047, 10.1016/j.gie.2010.07.037
Tamai, 2011, Su1566 computer-assisted automatic identification system for colorectal narrow band imaging (NBI) classification, Gastrointestinal Endoscopy, 73, AB306, 10.1016/j.gie.2011.03.620
Tamaki, 2011, A system for colorectal tumor classification in magnifying endoscopic NBI images, vol. 6493, 452
Tamegai, 2007, Endoscopic submucosal dissection (ESD) for large colorectal tumors comparing with endoscopic piecemeal mucosal resection (EPMR), Gastrointestinal Endoscopy, 65, AB275, 10.1016/j.gie.2007.03.663
Tanaka, 2006, High-magnification colonoscopy (with videos), Gastrointestinal Endoscopy, 64, 604, 10.1016/j.gie.2006.06.007
Tischendorf, 2010, Computer-aided classification of colorectal polyps based on vascular patterns: a pilot study, Endoscopy, 42, 203, 10.1055/s-0029-1243861
Tong, 2002, Support vector machine active learning with applications to text classification, J. Mach. Learn. Res., 2, 45
Tosun, 2009, Object-oriented texture analysis for the unsupervised segmentation of biopsy images for cancer detection, Pattern Recognition, 42, 1104, 10.1016/j.patcog.2008.07.007
Tuytelaars, T., 2010. Dense interest points. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2281–2288.
Tuytelaars, 2007, Local invariant feature detectors: a survey, Foundations and Trends® in Computer Graphics and Vision, 3, 177, 10.1561/0600000017
Tweedle, 2007, Screening for rectal cancer? will it improve cure rates?, Clinical Oncology, 19, 639, 10.1016/j.clon.2007.07.002
Vapnik, 1998
Vedaldi, A., Fulkerson, B., 2008. VLFeat: an open and portable library of computer vision algorithms. <http://www.vlfeat.org/>.
Vedaldi, 2012, Efficient additive kernels via explicit feature maps, IEEE Transactions on Pattern Analysis and Machine Intelligence, 34, 480, 10.1109/TPAMI.2011.153
Wada, 2009, Diagnosis of colorectal lesions with the magnifying narrow-band imaging system, Gastrointestinal Endoscopy, 70, 522, 10.1016/j.gie.2009.01.040
Watanabe, T., Itabashi, M., Shimada, Y., Tanaka, S., Ito, Y., Ajioka, Y., Hamaguchi, T., Hyodo, I., Igarashi, M., Ishida, H., Ishiguro, M., Kanemitsu, Y., Kokudo, N., Muro, K., Ochiai, A., Oguchi, M., Ohkura, Y., Saito, Y., Sakai, Y., Ueno, H., Yoshino, T., Fujimori, T., Koinuma, N., Morita, T., Nishimura, G., Sakata, Y., Takahashi, K., Takiuchi, H., Tsuruta, O., Yamaguchi, T., Yoshida, M., Yamaguchi, N., Kotake, K., Sugihara, K., for Cancer of the Colon, J.S., Rectum, 2012. Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2010 for the treatment of colorectal cancer. International Journal of Clinical Oncology 17, 1–29. http://dx.doi.org/10.1007/s10147-011-0315-2.
Weston, J., Watkins, C., 1999. Support vector machines for multi-class pattern recognition. In: Proc. of 7th European Symposium on Artificial Neural Networks (ESANN1999), pp. 219–224.
Winn, J., Criminisi, A., Minka, T., 2005. Object categorization by learned universal visual dictionary. In: Tenth IEEE International Conference on Computer Vision, 2005. ICCV 2005, pp. 1800–1807.
Wu, C.,. SiftGPU: A GPU implementation of scale invariant feature transform (SIFT). http://cs.unc.edu/ccwu/siftgpu/.
Yanai, 2009, Mining cultural differences from a large number of geotagged photos, 1173
Ye, 2008, Clinical course of submucosal colorectal cancers treated by endoscopic mucosal resection, Gastrointestinal Endoscopy, 67, AB312, 10.1016/j.gie.2008.03.925
Yoshida, 2004, Computer-aided diagnosis for CT colonography, Seminars in Ultrasound, CT, and MRI, 25, 419, 10.1053/j.sult.2004.07.002
Zhang, 2007, Local features and kernels for classification of texture and object categories: a comprehensive study, International Journal of Computer Vision, 73, 213, 10.1007/s11263-006-9794-4
Zhou, 2008, SIFT-Bag kernel for video event analysis, 229