Supported Cobalt Polyphthalocyanine for High-Performance Electrocatalytic CO2 Reduction

Chem - Tập 3 - Trang 652-664 - 2017
Na Han1, Yu Wang2, Lu Ma3, Jianguo Wen4, Jing Li1, Hechuang Zheng1, Kaiqi Nie1, Xinxia Wang1, Feipeng Zhao1, Yafei Li2, Jian Fan1, Jun Zhong1, Tianpin Wu3, Dean J. Miller4, Jun Lu3, Shuit-Tong Lee1, Yanguang Li1
1Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
2College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
3Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
4Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA

Tài liệu tham khảo

Qiao, 2014, A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels, Chem. Soc. Rev., 43, 631, 10.1039/C3CS60323G Whipple, 2010, Prospects of CO2 utilization via direct heterogeneous electrochemical reduction, J. Phys. Chem. Lett., 1, 3451, 10.1021/jz1012627 Costentin, 2013, Catalysis of the electrochemical reduction of carbon dioxide, Chem. Soc. Rev., 42, 2423, 10.1039/C2CS35360A Benson, 2009, Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels, Chem. Soc. Rev., 38, 89, 10.1039/B804323J Saveant, 2008, Molecular catalysis of electrochemical reactions. Mechanistic aspects, Chem. Rev., 108, 2348, 10.1021/cr068079z Finn, 2012, Molecular approaches to the electrochemical reduction of carbon dioxide, Chem. Commun., 48, 1392, 10.1039/C1CC15393E Gattrell, 2006, A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper, J. Electroanal. Chem., 594, 1, 10.1016/j.jelechem.2006.05.013 Kuhl, 2012, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces, Energy Environ. Sci., 5, 7050, 10.1039/c2ee21234j Li Christina, 2012, CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films, J. Am. Chem. Soc., 134, 7231, 10.1021/ja3010978 Chen, 2012, Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles, J. Am. Chem. Soc., 134, 19969, 10.1021/ja309317u Zhu, 2013, Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO, J. Am. Chem. Soc., 135, 16833, 10.1021/ja409445p Lu, 2014, A selective and efficient electrocatalyst for carbon dioxide reduction, Nat. Commun., 5, 4242 Manbeck, 2015, A review of iron and cobalt porphyrins, phthalocyanines and related complexes for electrochemical and photochemical reduction of carbon dioxide, J. Porphyr. Phthalocyanines, 19, 45, 10.1142/S1088424615300013 Meshitsuka, 1974, Electrocatalysis by metal phthalocyanines in the reduction of carbon dioxide, J. Chem. Soc. Chem. Commun., 158, 10.1039/c39740000158 Lieber, 1984, Catalytic reduction of carbon dioxide at carbon electrodes modified with cobalt phthalocyanine, J. Am. Chem. Soc., 106, 5033, 10.1021/ja00329a082 Schneider, 2012, Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts, Chem. Soc. Rev., 41, 2036, 10.1039/C1CS15278E Lin, 2015, Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water, Science, 349, 1208, 10.1126/science.aac8343 Bottari, 2010, Covalent and noncovalent phthalocyanine-carbon nanostructure systems: synthesis, photoinduced electron transfer, and application to molecular photovoltaics, Chem. Rev., 110, 6768, 10.1021/cr900254z Zagal, 2009, Carbon nanotubes, phthalocyanines and porphyrins: attractive hybrid materials for electrocatalysis and electroanalysis, J. Nanosci. Nanotechnol., 9, 2201, 10.1166/jnn.2009.SE15 Abel, 2011, Single layer of polymeric Fe-phthalocyanine: an organometallic sheet on metal and thin insulating film, J. Am. Chem. Soc., 133, 1203, 10.1021/ja108628r Szybowicz, 2010, Micro-Raman spectroscopic investigations of cobalt phthalocyanine thin films deposited on quartz and diamond substrates, Cryst. Res. Technol., 45, 1265, 10.1002/crat.201000331 Woehrle, 1985, Polymeric phthalocyanines and their precursors, 7. Synthesis and analytical characterization of polymers from 1,2,4,5-benzenetetracarboxylic acid derivatives, Makromol. Chem., 186, 2189, 10.1002/macp.1985.021861102 Li, 2015, Interfacial peroxidase-like catalytic activity of surface-immobilized cobalt phthalocyanine on multiwall carbon nanotubes, RSC Adv., 5, 9374, 10.1039/C4RA15306E Bambagioni, 2011, Single-site and nanosized Fe-Co electrocatalysts for oxygen reduction: synthesis, characterization and catalytic performance, J. Power Sources, 196, 2519, 10.1016/j.jpowsour.2010.11.030 Ortiz, 1996, Electrochemical and spectroelectrochemical studies of cobalt phthalocyanine polymers, J. Electrochem. Soc., 143, 1800, 10.1149/1.1836907 Enokida, 1991, Cobalt phthalocyanine crystal synthesized at low temperature, Chem. Mater., 3, 918, 10.1021/cm00017a030 Zagal, 1992, Electrocatalytic activity of metal phthalocyanines for oxygen reduction, J. Electroanal. Chem., 339, 13, 10.1016/0022-0728(92)80442-7 Ramos Sende, 1995, Electrocatalysis of CO2 reduction in aqueous media at electrodes modified with electropolymerized films of vinylterpyridine complexes of transition metals, Inorg. Chem., 34, 3339, 10.1021/ic00116a028 Kornienko, 2015, Metal-organic frameworks for electrocatalytic reduction of carbon dioxide, J. Am. Chem. Soc., 137, 14129, 10.1021/jacs.5b08212 Shen, 2015, Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin, Nat. Commun., 6, 8177, 10.1038/ncomms9177 Hsieh, 2015, Effect of chloride anions on the synthesis and enhanced catalytic activity of silver nanocoral electrodes for CO2 electroreduction, ACS Catal., 5, 5349, 10.1021/acscatal.5b01235 Aoi, 2015, Selective electrochemical reduction of CO2 to CO with a cobalt chlorin complex adsorbed on multi-walled carbon nanotubes in water, Chem. Commun., 51, 10226, 10.1039/C5CC03340C Tornow Claire, 2012, Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO, J. Am. Chem. Soc., 134, 19520, 10.1021/ja308217w Gao, 2015, Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles, J. Am. Chem. Soc., 137, 4288, 10.1021/jacs.5b00046 Kapusta, 1984, Carbon dioxide reduction at a metal phthalocyanine catalyzed carbon electrode, J. Electrochem. Soc., 131, 1511, 10.1149/1.2115882 Chen, 2012, Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts, J. Am. Chem. Soc., 134, 1986, 10.1021/ja2108799 Norskov, 2004, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, J. Phys. Chem. B, 108, 17886, 10.1021/jp047349j Nielsen, 2010, Cobalt-porphyrin catalyzed electrochemical reduction of carbon dioxide in water. 1. A density functional study of intermediates, J. Phys. Chem. A, 114, 10166, 10.1021/jp101180m Leung, 2010, Cobalt-porphyrin catalyzed electrochemical reduction of carbon dioxide in water. 2. Mechanism from first principles, J. Phys. Chem. A, 114, 10174, 10.1021/jp1012335 Shen, 2016, DFT study on the mechanism of the electrochemical reduction of CO2 catalyzed by cobalt porphyrins, J. Phys. Chem. C, 120, 15714, 10.1021/acs.jpcc.5b10763 Goettle, 2017, Proton-coupled electron transfer in the electrocatalysis of CO2 reduction: prediction of sequential vs. concerted pathways using DFT, Chem. Sci., 8, 458, 10.1039/C6SC02984A Wang, 2016, Iron polyphthalocyanine sheathed multiwalled carbon nanotubes: a high-performance electrocatalyst for oxygen reduction reaction, Nano Res., 9, 1497, 10.1007/s12274-016-1046-5 Kresse, 1993, Ab initio molecular dynamics of liquid metals, Phys. Rev. B, 47, 558, 10.1103/PhysRevB.47.558 Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0 Bloechl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953 Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758 Hammer, 1999, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals, Phys. Rev. B, 59, 7413, 10.1103/PhysRevB.59.7413 Mathew, 2014, Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways, J. Chem. Phys., 140, 084106, 10.1063/1.4865107