Shedding light on electrodeposition dynamics tracked in situ via soft X-ray coherent diffraction imaging

Nano Research - Tập 9 - Trang 2046-2056 - 2016
George Kourousias1, Benedetto Bozzini2, Alessandra Gianoncelli1, Michael W. M. Jones3,4, Mark Junker5, Grant van Riessen5, Maya Kiskinova1
1ELETTRA, Sincrotrone Trieste SCpA, Trieste, Italy
2Dipartimento di Ingegneria dell’Innovazione, Università del Salento, Lecce, Italy
3Australian Synchrotron, Clayton, Australia
4ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe Institute of Molecular Science, La Trobe University, Bundoora, Australia
5Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia

Tóm tắt

The in situ physicochemical analysis of nanostructured functional materials is crucial for advances in their design and production. X-ray coherent diffraction imaging (CDI) methods have recently demonstrated impressive potential for characterizing such materials with a high spatial resolution and elemental sensitivity; however, moving from the current ex situ static regime to the in situ dynamic one remains a challenge. By combining soft X-ray ptychography and single-shot keyhole CDI, we performed the first in situ spatiotemporal study on an electrodeposition process in a sealed wet environment, employed for the fabrication of oxygen-reduction catalysts, which are key components for alkaline fuel cells and metal-air batteries. The results provide the first experimental demonstration of theoretically predicted Turing–Hopf electrochemical pattern formation resulting from morphochemical coupling, adding a new dimension for the in-depth in situ characterization of electrodeposition processes in space and time.

Tài liệu tham khảo

Guay, D.; Stewart-Ornstein, J.; Zhang, X. R.; Hitchcock, A. P. In situ spatial and time-resolved studies of electrochemical reactions by scanning transmission X-ray microscopy. Anal. Chem. 2005, 77, 3479–3487. Hitchcock, A. P.; Toney, M. F. Spectromicroscopy and coherent diffraction imaging: Focus on energy materials applications. J. Synchrotron Radiat. 2014, 21, 1019–1030. Holt, M.; Harder, R.; Winarski, R.; Rose, V. Nanoscale hard X-ray microscopy methods for materials studies. Annu. Rev. Mater. Res. 2013, 43, 183–211. Zhong, J.; Zhang, H.; Sun, X. H.; Lee, S.-T. Synchrotron soft X-ray absorption spectroscopy study of carbon and silicon nanostructures for energy applications. Adv. Mater. 2014, 26, 7786–7806. Gianoncelli, A.; Sgura, I.; Bocchetta, P.; Lacitignola, D.; Bozzini, B. High-lateral resolution X-ray fluorescence microspectroscopy and dynamic mathematical modelling as tools for the study of electrodeposited electrocatalysts. X-Ray Spectrom. 2015, 44, 263–275. Lacitignola, D.; Bozzini, B.; Sgura, I. Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay. Eur. J. Appl. Math. 2015, 26, 143–173. Rodenburg, J. M.; Hurst, A. C.; Cullis, A. G.; Dobson, B. R.; Pfeiffer, F.; Bunk, O.; David, C.; Jefimovs, K.; Johnson, I. Hard-X-ray lensless imaging of extended objects. Phys. Rev. Lett. 2007, 98, 034801. Abbey, B.; Nugent, K. A.; Williams, G. J.; Clark, J. N.; Peele, A. G.; Pfeifer, M. A.; de Jonge, M.; McNulty, I. Keyhole coherent diffractive imaging. Nat. Phys. 2008, 4, 394–398. Shapiro, D. A.; Yu, Y.-S.; Tyliszczak, T.; Cabana, J.; Celestre, R.; Chao, W. L.; Kaznatcheev, K.; Kilcoyne, A. L. D.; Maia, F.; Marchesini, S. et al. Chemical composition mapping with nanometre resolution by soft X-ray microscopy. Nat. Photonics 2014, 8, 765–769. Thibault, P.; Dierolf, M.; Menzel, A.; Bunk, O.; David, C.; Pfeiffer, F. High-resolution scanning X-ray diffraction microscopy. Science 2008, 321, 379–382. Thibault, P.; Menzel, A. Reconstructing state mixtures from diffraction measurements. Nature 2013, 494, 68–71. Giewekemeyer, K.; Beckers, M.; Gorniak, T.; Grunze, M.; Salditt, T.; Rosenhahn, A. Ptychographic coherent X-ray diffractive imaging in the water window. Opt. Express 2011, 19, 1037–1050. Giewekemeyer, K.; Thibault, P.; Kalbfleisch, S.; Beerlink, A.; Kewish, C. M.; Dierolf, M.; Pfeiffer, F.; Salditt, T. Quantitative biological imaging by ptychographic X-ray diffraction microscopy. Proc. Natl. Acad. Sci. USA 2010, 107, 529–534. Hitchcock, A. P. Soft X-ray spectromicroscopy and ptychography. J. Electron Spectrosc. Relat. Phenom. 2015, 200, 49–63. Thibault, P.; Guizar-Sicairos, M.; Menzel, A. Coherent imaging at the diffraction limit. J. Synchrotron Radiat. 2014, 21, 1011–1018. Schropp, A.; Hoppe, R.; Patommel, J.; Samberg, D.; Seiboth, F.; Stephan, S.; Wellenreuther, G.; Falkenberg, G.; Schroer, C. G. Hard X-ray scanning microscopy with coherent radiation: Beyond the resolution of conventional X-ray microscopes. Appl. Phys. Lett. 2012, 100, 253112. Clark, J. N.; Huang, X. J.; Harder, R. J.; Robinson, I. K. Dynamic imaging using ptychography. Phys. Rev. Lett. 2014, 112, 113901. Zhang, B. S.; Seaberg, M. D.; Adams, D. E.; Gardner, D. F.; Shanblatt, E. R.; Shaw, J. M.; Chao, W. L.; Gullikson, E. M.; Salmassi, F.; Kapteyn, H. C. et al. Full field tabletop EUV coherent diffractive imaging in a transmission geometry. Opt. Express 2013, 21, 21970–21980. Dierolf, M.; Menzel, A.; Thibault, P.; Schneider, P.; Kewish, C. M.; Wepf, R.; Bunk, O.; Pfeiffer, F. Ptychographic X-ray computed tomography at the nanoscale. Nature 2010, 467, 436–439. Jones, M. W. M.; Abbey, B.; Gianoncelli, A.; Balaur, E.; Millet, C.; Luu, M. B.; Coughlan, H. D.; Carroll, A. J.; Peele, A. G.; Tilley, L. et al. Phase-diverse Fresnel coherent diffractive imaging of malaria parasite-infected red blood cells in the water window. Opt. Express 2013, 21, 32151–32159. Maiden, A. M.; Morrison, G. R.; Kaulich, B.; Gianoncelli, A.; Rodenburg, J. M. Soft X-ray spectromicroscopy using ptychography with randomly phased illumination. Nat. Commun. 2013, 4, 1669. Beckers, M.; Senkbeil, T.; Gorniak, T.; Reese, M.; Giewekemeyer, K.; Gleber, S.-C.; Salditt, T.; Rosenhahn, A. Chemical contrast in soft X-ray ptychography. Phys. Rev. Lett. 2011, 107, 208101. Hoppe, R.; Reinhardt, J.; Hofmann, G.; Patommel, J.; Grunwaldt, J.-D.; Damsgaard, C. D.; Wellenreuther, G.; Falkenberg, G.; Schroer, C. G. High-resolution chemical imaging of gold nanoparticles using hard X-ray ptychography. Appl. Phys. Lett. 2013, 102, 203104. Takahashi, Y.; Suzuki, A.; Zettsu, N.; Kohmura, Y.; Yamauchi, K.; Ishikawa, T. Multiscale element mapping of buried structures by ptychographic X-ray diffraction microscopy using anomalous scattering. Appl. Phys. Lett. 2011, 99, 131905. Meirer, F.; Cabana, J.; Liu, Y. J.; Mehta, A.; Andrews, J. C.; Pianetta, P. Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. J. Synchrotron Radiat. 2011, 18, 773–781. Bozzini, B.; Bocchetta, P.; Gianoncelli, A.; Mele, C.; Kiskinova, M. Electrodeposition and ageing of Mn-based binary composite oxygen reduction reaction electrocatalysts. ChemElectroChem 2015, 2, 1541–1550. Bozzini, B.; Bocchetta, P.; Gianoncelli, A.; Kourousias, G.; Kiskinova, M.; Zilio, S. In situ soft X-ray fluorescence and absorption microspectroscopy: A study of Mn-Co/polypyrrole electrodeposition. J. Vac. Sci. Technol. A 2015, 33, 031102. van Riessen, G. A.; Junker, M.; Phillips, N. W.; Peele, A. G. A soft X-ray beamline for quantitative nanotomography using ptychography. In Proceedings of the SPIE 8851, X-Ray Nanoimaging: Instruments and Methods, San Diego, California, USA, 2013. Jones, M. W. M.; Dearnley, M. K.; van Riessen, G. A.; Abbey, B.; Putkunz, C. T.; Junker, M. D.; Vine, D. J.; McNulty, I.; Nugent, K. A.; Peele, A. G. et al. Rapid, low dose X-ray diffractive imaging of the malaria parasite Plasmodium falciparum. Ultramicroscopy 2014, 143, 88–92. Bozzini, B.; Gianoncelli, A.; Bocchetta, P.; Dal Zilio, S.; Kourousias, G. Fabrication of a sealed electrochemical microcell for in situ soft X-ray microspectroscopy and testing with in situ Co-polypyrrole composite electrodeposition for Pt-free oxygen electrocatalysis. Anal. Chem. 2014, 86, 664–670. Davidson, N.; Abbey, B.; Quiney, H. M.; Julius, T. D.; Allman, B.; Jones, M. W. M.; Putkunz, C. T.; Torrance, A.; Wittler, H.; Carroll, A. et al. NADIA Software Project; ARC Centre of Excellence for Coherent X-ray Science, 2011. http://www.coecxs.org/joomla/index.php/research-andprojects/ nadia-software-project.html (accessed Feb 10, 2016). Henke, B. L.; Gullikson, E. M.; Davis, J. C. X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. At. Data Nucl. Data Tables 1993, 54, 181–342. Popov, K.; Grgur, B.; Djokic, S. S. Fundamental Aspects of Electrometallurgy; Springer: New York, 2002. Bocchetta, P.; Amati, M.; Bozzini, B.; Catalano, M.; Gianoncelli, A.; Gregoratti, L.; Taurino, A.; Kiskinova, M. Quasi-in-situ single-grain photoelectron microspectroscopy of Co/PPy nanocomposites under oxygen reduction reaction. ACS Appl. Mater. Interfaces 2014, 6, 19621–19629. Bocchetta, P.; Amati, M.; Gregoratti, L.; Kiskinova, M.; Sezen, H.; Taurino, A.; Bozzini, B. Morphochemical evolution during ageing of pyrolysed Mn/polypyrrole nanocomposite oxygen reduction electrocatalysts: A study based on quasi-in situ photoelectron spectromicroscopy. J. Electroanal. Chem. 2015, 758, 191–200. Sgura, I.; Bozzini, B.; Lacitignola, D. Numerical approximation of Turing patterns in electrodeposition by ADI methods. J. Comput. Appl. Math. 2012, 236, 4132–4147. Gianoncelli, A.; Vaccari, L.; Kourousias, G.; Cassese, D.; Bedolla, D. E.; Kenig, S.; Storici, P.; Lazzarino, M.; Kiskinova, M. Soft X-ray microscopy radiation damage on fixed cells investigated with synchrotron radiation FTIR microscopy. Sci. Rep. 2015, 5, 10250. Bacquart, T.; Devès, G.; Carmona, A.; Tucoulou, R.; Bohic, S.; Ortega, R. Subcellular speciation analysis of trace element oxidation states using synchrotron radiation micro-X-ray absorption near-edge structure. Anal. Chem. 2007, 79, 7353–7359. Kijewska, K.; Blanchard, G. J.; Szlachetko, J.; Stolarski, J.; Kisiel, A.; Michalska, A.; Maksymiuk, K.; Pisarek, M.; Majewski, P.; Krysinski, P. et al. Photopolymerized polypyrrole microvessels. Chemistry 2012, 18, 310–320.