Shedding light on electrodeposition dynamics tracked in situ via soft X-ray coherent diffraction imaging
Tóm tắt
The in situ physicochemical analysis of nanostructured functional materials is crucial for advances in their design and production. X-ray coherent diffraction imaging (CDI) methods have recently demonstrated impressive potential for characterizing such materials with a high spatial resolution and elemental sensitivity; however, moving from the current ex situ static regime to the in situ dynamic one remains a challenge. By combining soft X-ray ptychography and single-shot keyhole CDI, we performed the first in situ spatiotemporal study on an electrodeposition process in a sealed wet environment, employed for the fabrication of oxygen-reduction catalysts, which are key components for alkaline fuel cells and metal-air batteries. The results provide the first experimental demonstration of theoretically predicted Turing–Hopf electrochemical pattern formation resulting from morphochemical coupling, adding a new dimension for the in-depth in situ characterization of electrodeposition processes in space and time.
Tài liệu tham khảo
Guay, D.; Stewart-Ornstein, J.; Zhang, X. R.; Hitchcock, A. P. In situ spatial and time-resolved studies of electrochemical reactions by scanning transmission X-ray microscopy. Anal. Chem. 2005, 77, 3479–3487.
Hitchcock, A. P.; Toney, M. F. Spectromicroscopy and coherent diffraction imaging: Focus on energy materials applications. J. Synchrotron Radiat. 2014, 21, 1019–1030.
Holt, M.; Harder, R.; Winarski, R.; Rose, V. Nanoscale hard X-ray microscopy methods for materials studies. Annu. Rev. Mater. Res. 2013, 43, 183–211.
Zhong, J.; Zhang, H.; Sun, X. H.; Lee, S.-T. Synchrotron soft X-ray absorption spectroscopy study of carbon and silicon nanostructures for energy applications. Adv. Mater. 2014, 26, 7786–7806.
Gianoncelli, A.; Sgura, I.; Bocchetta, P.; Lacitignola, D.; Bozzini, B. High-lateral resolution X-ray fluorescence microspectroscopy and dynamic mathematical modelling as tools for the study of electrodeposited electrocatalysts. X-Ray Spectrom. 2015, 44, 263–275.
Lacitignola, D.; Bozzini, B.; Sgura, I. Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay. Eur. J. Appl. Math. 2015, 26, 143–173.
Rodenburg, J. M.; Hurst, A. C.; Cullis, A. G.; Dobson, B. R.; Pfeiffer, F.; Bunk, O.; David, C.; Jefimovs, K.; Johnson, I. Hard-X-ray lensless imaging of extended objects. Phys. Rev. Lett. 2007, 98, 034801.
Abbey, B.; Nugent, K. A.; Williams, G. J.; Clark, J. N.; Peele, A. G.; Pfeifer, M. A.; de Jonge, M.; McNulty, I. Keyhole coherent diffractive imaging. Nat. Phys. 2008, 4, 394–398.
Shapiro, D. A.; Yu, Y.-S.; Tyliszczak, T.; Cabana, J.; Celestre, R.; Chao, W. L.; Kaznatcheev, K.; Kilcoyne, A. L. D.; Maia, F.; Marchesini, S. et al. Chemical composition mapping with nanometre resolution by soft X-ray microscopy. Nat. Photonics 2014, 8, 765–769.
Thibault, P.; Dierolf, M.; Menzel, A.; Bunk, O.; David, C.; Pfeiffer, F. High-resolution scanning X-ray diffraction microscopy. Science 2008, 321, 379–382.
Thibault, P.; Menzel, A. Reconstructing state mixtures from diffraction measurements. Nature 2013, 494, 68–71.
Giewekemeyer, K.; Beckers, M.; Gorniak, T.; Grunze, M.; Salditt, T.; Rosenhahn, A. Ptychographic coherent X-ray diffractive imaging in the water window. Opt. Express 2011, 19, 1037–1050.
Giewekemeyer, K.; Thibault, P.; Kalbfleisch, S.; Beerlink, A.; Kewish, C. M.; Dierolf, M.; Pfeiffer, F.; Salditt, T. Quantitative biological imaging by ptychographic X-ray diffraction microscopy. Proc. Natl. Acad. Sci. USA 2010, 107, 529–534.
Hitchcock, A. P. Soft X-ray spectromicroscopy and ptychography. J. Electron Spectrosc. Relat. Phenom. 2015, 200, 49–63.
Thibault, P.; Guizar-Sicairos, M.; Menzel, A. Coherent imaging at the diffraction limit. J. Synchrotron Radiat. 2014, 21, 1011–1018.
Schropp, A.; Hoppe, R.; Patommel, J.; Samberg, D.; Seiboth, F.; Stephan, S.; Wellenreuther, G.; Falkenberg, G.; Schroer, C. G. Hard X-ray scanning microscopy with coherent radiation: Beyond the resolution of conventional X-ray microscopes. Appl. Phys. Lett. 2012, 100, 253112.
Clark, J. N.; Huang, X. J.; Harder, R. J.; Robinson, I. K. Dynamic imaging using ptychography. Phys. Rev. Lett. 2014, 112, 113901.
Zhang, B. S.; Seaberg, M. D.; Adams, D. E.; Gardner, D. F.; Shanblatt, E. R.; Shaw, J. M.; Chao, W. L.; Gullikson, E. M.; Salmassi, F.; Kapteyn, H. C. et al. Full field tabletop EUV coherent diffractive imaging in a transmission geometry. Opt. Express 2013, 21, 21970–21980.
Dierolf, M.; Menzel, A.; Thibault, P.; Schneider, P.; Kewish, C. M.; Wepf, R.; Bunk, O.; Pfeiffer, F. Ptychographic X-ray computed tomography at the nanoscale. Nature 2010, 467, 436–439.
Jones, M. W. M.; Abbey, B.; Gianoncelli, A.; Balaur, E.; Millet, C.; Luu, M. B.; Coughlan, H. D.; Carroll, A. J.; Peele, A. G.; Tilley, L. et al. Phase-diverse Fresnel coherent diffractive imaging of malaria parasite-infected red blood cells in the water window. Opt. Express 2013, 21, 32151–32159.
Maiden, A. M.; Morrison, G. R.; Kaulich, B.; Gianoncelli, A.; Rodenburg, J. M. Soft X-ray spectromicroscopy using ptychography with randomly phased illumination. Nat. Commun. 2013, 4, 1669.
Beckers, M.; Senkbeil, T.; Gorniak, T.; Reese, M.; Giewekemeyer, K.; Gleber, S.-C.; Salditt, T.; Rosenhahn, A. Chemical contrast in soft X-ray ptychography. Phys. Rev. Lett. 2011, 107, 208101.
Hoppe, R.; Reinhardt, J.; Hofmann, G.; Patommel, J.; Grunwaldt, J.-D.; Damsgaard, C. D.; Wellenreuther, G.; Falkenberg, G.; Schroer, C. G. High-resolution chemical imaging of gold nanoparticles using hard X-ray ptychography. Appl. Phys. Lett. 2013, 102, 203104.
Takahashi, Y.; Suzuki, A.; Zettsu, N.; Kohmura, Y.; Yamauchi, K.; Ishikawa, T. Multiscale element mapping of buried structures by ptychographic X-ray diffraction microscopy using anomalous scattering. Appl. Phys. Lett. 2011, 99, 131905.
Meirer, F.; Cabana, J.; Liu, Y. J.; Mehta, A.; Andrews, J. C.; Pianetta, P. Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. J. Synchrotron Radiat. 2011, 18, 773–781.
Bozzini, B.; Bocchetta, P.; Gianoncelli, A.; Mele, C.; Kiskinova, M. Electrodeposition and ageing of Mn-based binary composite oxygen reduction reaction electrocatalysts. ChemElectroChem 2015, 2, 1541–1550.
Bozzini, B.; Bocchetta, P.; Gianoncelli, A.; Kourousias, G.; Kiskinova, M.; Zilio, S. In situ soft X-ray fluorescence and absorption microspectroscopy: A study of Mn-Co/polypyrrole electrodeposition. J. Vac. Sci. Technol. A 2015, 33, 031102.
van Riessen, G. A.; Junker, M.; Phillips, N. W.; Peele, A. G. A soft X-ray beamline for quantitative nanotomography using ptychography. In Proceedings of the SPIE 8851, X-Ray Nanoimaging: Instruments and Methods, San Diego, California, USA, 2013.
Jones, M. W. M.; Dearnley, M. K.; van Riessen, G. A.; Abbey, B.; Putkunz, C. T.; Junker, M. D.; Vine, D. J.; McNulty, I.; Nugent, K. A.; Peele, A. G. et al. Rapid, low dose X-ray diffractive imaging of the malaria parasite Plasmodium falciparum. Ultramicroscopy 2014, 143, 88–92.
Bozzini, B.; Gianoncelli, A.; Bocchetta, P.; Dal Zilio, S.; Kourousias, G. Fabrication of a sealed electrochemical microcell for in situ soft X-ray microspectroscopy and testing with in situ Co-polypyrrole composite electrodeposition for Pt-free oxygen electrocatalysis. Anal. Chem. 2014, 86, 664–670.
Davidson, N.; Abbey, B.; Quiney, H. M.; Julius, T. D.; Allman, B.; Jones, M. W. M.; Putkunz, C. T.; Torrance, A.; Wittler, H.; Carroll, A. et al. NADIA Software Project; ARC Centre of Excellence for Coherent X-ray Science, 2011. http://www.coecxs.org/joomla/index.php/research-andprojects/ nadia-software-project.html (accessed Feb 10, 2016).
Henke, B. L.; Gullikson, E. M.; Davis, J. C. X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. At. Data Nucl. Data Tables 1993, 54, 181–342.
Popov, K.; Grgur, B.; Djokic, S. S. Fundamental Aspects of Electrometallurgy; Springer: New York, 2002.
Bocchetta, P.; Amati, M.; Bozzini, B.; Catalano, M.; Gianoncelli, A.; Gregoratti, L.; Taurino, A.; Kiskinova, M. Quasi-in-situ single-grain photoelectron microspectroscopy of Co/PPy nanocomposites under oxygen reduction reaction. ACS Appl. Mater. Interfaces 2014, 6, 19621–19629.
Bocchetta, P.; Amati, M.; Gregoratti, L.; Kiskinova, M.; Sezen, H.; Taurino, A.; Bozzini, B. Morphochemical evolution during ageing of pyrolysed Mn/polypyrrole nanocomposite oxygen reduction electrocatalysts: A study based on quasi-in situ photoelectron spectromicroscopy. J. Electroanal. Chem. 2015, 758, 191–200.
Sgura, I.; Bozzini, B.; Lacitignola, D. Numerical approximation of Turing patterns in electrodeposition by ADI methods. J. Comput. Appl. Math. 2012, 236, 4132–4147.
Gianoncelli, A.; Vaccari, L.; Kourousias, G.; Cassese, D.; Bedolla, D. E.; Kenig, S.; Storici, P.; Lazzarino, M.; Kiskinova, M. Soft X-ray microscopy radiation damage on fixed cells investigated with synchrotron radiation FTIR microscopy. Sci. Rep. 2015, 5, 10250.
Bacquart, T.; Devès, G.; Carmona, A.; Tucoulou, R.; Bohic, S.; Ortega, R. Subcellular speciation analysis of trace element oxidation states using synchrotron radiation micro-X-ray absorption near-edge structure. Anal. Chem. 2007, 79, 7353–7359.
Kijewska, K.; Blanchard, G. J.; Szlachetko, J.; Stolarski, J.; Kisiel, A.; Michalska, A.; Maksymiuk, K.; Pisarek, M.; Majewski, P.; Krysinski, P. et al. Photopolymerized polypyrrole microvessels. Chemistry 2012, 18, 310–320.