Discrete Iron(III) Oxide Nanoislands for Efficient and Photostable Perovskite Solar Cells

Advanced Functional Materials - Tập 27 Số 34 - 2017
Qiang Luo1, Haijun Chen1, Yuze Lin2, Huayun Du3, Qinzhi Hou1, Feng Hao1, Ning Wang1,4, Zhanhu Guo3, Jinsong Huang2
1State Key Laboratory of Electronic Thin Film and Integrated Devices , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
2Mechanical Engineering Department University of Nebraska Lincoln NE 68588 USA
3Integrated Composites Laboratory (ICL) Department of Chemical & Biomolecular Engineering University of Tennessee Knoxville TN 37996 USA
4State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China

Tóm tắt

Perovskite solar cells typically use TiO2 as charge extracting materials, which reduce the photostability of perovskite solar cells under illumination (including ultraviolet light). Simultaneously realizing the high efficiency and photostability, it is demonstrated that the rationally designed iron(III) oxide nanoisland electrodes consisting of discrete nanoislands in situ growth on the compact underlayer can be used as compatible and excellent electron extraction materials for perovskite solar cells. The uniquely designed iron(III) oxide electron extraction layer satisfies the good light transmittance and sufficient electron extraction ability, resulting in a promising power conversion efficiency of 18.2%. Most importantly, perovskite solar cells fabricated with iron(III) oxide show a significantly improved UV light and long‐term operation stabilities compared with the widely used TiO2‐based electron extraction material, owing to the low photocatalytic activity of iron(III) oxide. This study highlights the potential of incorporating new charge extraction materials in achieving photostable and high efficiency perovskite photovoltaic devices.

Từ khóa


Tài liệu tham khảo

10.1126/science.1228604

10.1038/srep00591

10.1038/nature12340

10.1038/nature14133

10.1126/science.1254050

10.1021/ja809598r

National Renewable Energy Laboratory Best Research‐Cell Efficiencies chart www.nrelgov/ncpv/images/efficiency_chartjpg accessed July 2017.

10.1039/C5EE03874J

10.1126/science.aah5557

10.1038/nenergy.2016.48

10.1038/nenergy.2016.152

10.1038/nmat4572

10.1039/C6EE02016J

10.1002/aenm.201500963

10.1038/ncomms3885

10.1039/C5EE03522H

10.1021/acsenergylett.6b00069

10.1021/jp500449z

10.1063/1.4891181

10.1016/j.nanoen.2016.10.055

10.1038/ncomms12446

10.1126/science.aam6620

10.1039/C5EE03874J

10.1126/science.aad1015

10.1039/C6EE03352K

10.1002/cssc.201000416

10.1038/35104607

10.1016/j.ccr.2012.06.017

10.1021/la049164

10.1039/C7CE00279C

10.1002/adma.200501562

10.1039/C6TA09174A

10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B

10.1002/sia.1984

10.1002/aenm.201501056

10.1021/jacs.5b10614

10.1021/ja5125594

10.1039/C6TA01715K

10.1021/jz500059v

10.1021/acs.jpclett.5b02273

10.1002/aenm.201500829

10.1038/nphoton.2013.342

10.1038/ncomms8410

10.1002/adma.201505241

10.1021/acsami.5b12336

10.1039/C5EE02608C

10.1021/jacs.5b01994

10.1039/C5EE00120J

10.1039/C4TA04994B