Two-Dimensional Martingale Transforms and Their Applications in Summability of Walsh–Fourier Series

The Journal of Geometric Analysis - Tập 33 - Trang 1-19 - 2023
Ushangi Goginava1, Károly Nagy2
1Department of Mathematical Sciences, United Arab Emirates University, Al Ain, UAE
2Institute of Mathematics and Computer Sciences, Eszterházy Károly Catholic University, Eger, Hungary

Tóm tắt

In the paper, we are going to prove that the Nörlund logarithmic means of quadratic partial sums of two-dimensional Walsh–Fourier series is bounded from $$L\log L\left( (0,1]\times (0,1]\right) $$ to $$L_{1,\infty }((0,1]\times (0,1])$$ . As a consequence, it can be obtained that $$L\log L\left( (0,1]\times (0,1]\right) $$ is maximal Orlicz space, where the Nörlund logarithmic means of quadratic partial sums of two-dimensional Walsh–Fourier series for the functions from this space converge in measure.

Tài liệu tham khảo

Antonov, N.Yu.: On the convergence almost everywhere of multiple trigonometric Fourier series over cubes. (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 68(2), 3–22 (2004); translation in Izv. Math. 68(2), 223–241 (2004) Burkholder, D.L.: Martingale transform. Ann. Math. Stat. 37, 1494–1504 (1966) Burkholder, D.L.: A sharp inequality for martingale transform. Ann. Prob. 7, 858–863 (1979) Cairoli, R.: Une inégalité pour martingale à indices multiples et res applications. Séminaire de Probabilités IV. (Lect. Notes Math., vol. 124, pp. 1-27) Springer, Berlin (1970) Chao, J.-A., Long, R.-L.: Martingale transforms with unbounded multipliers. Proc. Am. Math. Soc. 114(3), 831–838 (1992) Frangos, N., Imkeller, P.: Quadratic variation for a class of \( L\log ^{+}L\)-bounded two-parameter martingales. Ann. Probab. 15(3), 1097–1111 (1987) Gát, G., Karagulyan, G.: On convergence properties of tensor products of some operator sequences. J. Geom. Anal. 26(4), 3066–3089 (2016) Gát, G., Nagy, K.: Almost everywhere convergence of a subsequence of the logarithmic means of Vilenkin-Fourier series. Facta Universitatis (NiS) Ser. 21(3), 275–289 (2008) Gát, G., Goginava, U., Tkebuchava, G.: Convergence of logarithmic means of multiple Walsh-Fourier series. Anal. Theory Appl. 21(4), 326–338 (2005) Gát, G., Goginava, U., Tkebuchava, G.: Convergence in measure of logarithmic means of double Walsh-Fourier series. Georgian Math. J. 12(4), 607–618 (2005) Gát, G., Goginava, U., Tkebuchava, G.: Convergence in measure of logarithmic means of quadratical partial sums of double Walsh-Fourier series. J. Math. Anal. Appl. 323(1), 535–549 (2006) Gát, G., Goginava, U., Karagulyan, G.: Almost everywhere strong summability of Marcinkiewicz means of double Walsh-Fourier series. Anal. Math. 40(4), 243–266 (2014) Getsadze, R.: On the Divergence in Measure of Multiple Fourier Series. Some Problems of Function Theory and Functional Analysis, vol. 4, pp. 59–76. Tbilisi State University (1988) Glukhov, V.A.: Summation of multiple Fourier series in multiplicative systems. Mat. Zametki 39, 665–673 (1986). ((in Russian)) Goginava, U.: Almost everywhere strong summability of cubic partial sums of d-dimensional Walsh-Fourier series. Math. Inequal. Appl. 20(4), 1051–1066 (2017) Goginava, U., Nagy, K.: Convergence in measure of logarithmic means of quadratical partial sums of double Walsh-Kaczmarz-Fourier series. J. Funct. Spaces Appl. (2012) Goginava, U., Oniani, G.: On the almost everywhere convergence of multiple Fourier series of square summable functions. Publ. Math. Debrecen 97(3–4), 313–320 (2020) Goginava, U., Gogoladze, L., Karagulyan, G.: BMO-estimation and almost everywhere exponential summability of quadratic partial sums of double Fourier series. Constr. Approx. 40(1), 105–120 (2014) Golubov, B.I., Efimov, A.V., Skvortsov, V.A.: Series and transformations of Walsh, Nauka, Moscow, 1987 (Russian); English transl.: Kluwer Academic Publishers (1991) Imkeller, P.: Two-parameter martingales and their quadratic variation. (Lect.Notes Math., vol. 1308). Springer, New York (1988) Kolmogorov, A.N.: Sur les functions harmoniques conjugees and les series de Fouries. Fund. Math. 17, 23–28 (1925) Konjagin, S.V.: On subsequences of partial Fourier-Walsh. Math. Notes 54(4), 69–75 (1993) Krasnoselskiĭ, M., Rutickiĭ, Ja. B.: Convex functions and Orlicz spaces. Translated from the first Russian edition by Leo F. Boron. P. Noordhoff Ltd., Groningen (1961) Lukomski, S.F.: Convergence of multiple Walsh series in measure and in \(L\). East J. Approx. 3(3), 317–332 (1997) Lukomski, S.F.: Multiple Walsh series: Convergence in measure and almost everywhere. Dokl. Math. 57(1), 81–82 (1998); translation from Dokl Akad. Nauk, Ross. Acad. Nauk, 358(4), 459–460 (1998) Morgenthaller, G.: Walsh-Fourier series. Trans. Am. Math. Soc. 84(2), 472–507 (1957) Nagy, K.: Almost everywhere convergence of a subsequence of the Nörlund logarithmic means of Walsh-Kaczmarz-Fourier series. J. Math. Ineq. 3(4), 499–510 (2009) Schipp, F., Wade, W., Simon, P., Pál, P.: Walsh Series. An Introduction to Dyadic Harmonic Analysis. Adam Hilger, Bristol (1990) Sjölin, P.: Convergence almost everywhere of certain singular integrals and multiple Fourier series. Ark. Mat. 9, 65–90 (1971) Tkebuchava, G.: On multiple Fourier, Fourier-Walsh and Fourier-Haar series in nonreflexive separable Orlicz space. Bull. Georg. Acad. Sci. 149(2), 1–3 (1994) Tkebuchava, G.: Subsequences of partial sums of multiple Fourier and Fourier-Walsh series. Bull. Georg. Acad. Sci. 169(2), 252–253 (2004) Weisz, F.: Hardy Spaces and Their Applications in Fourier Analysis. Lect. Notes Math. 1568. Springer, Berlin (1994) Weisz, F.: Summability of Multi-dimensional Fourier Series and Hardy Space. Kluwer Academic, Dordrecht (2002) Zhizhiashvili, L.: Some Problems of Multidimensional Harmonic Analysis. TGU, Tbilisi (1996). ((Russian)) Zygmund, A.: Trigonometric Series, vol. 1. Cambridge University Press, Cambridge (1959)