Hydrogen production through methane reforming processes using promoted-Ni/mesoporous silica: A review
Tài liệu tham khảo
Wu, 2011, Appl. Catal. B, 108, 6, 10.1016/j.apcatb.2011.07.023
Dietenberger, 2007, Ind. Eng. Chem. Res., 46, 8863, 10.1021/ie071158w
Fuertes, 2012, Energy Procedia, 29, 181, 10.1016/j.egypro.2012.09.023
Wu, 2013, ACS Sustainable Chem. Eng., 1, 1083, 10.1021/sc300133c
Ye, 2018, Catal. Today, 307, 154, 10.1016/j.cattod.2017.05.077
Bičáková, 2010, Acta Geodyn. Geomater., 7, 175
Jin, 2021, Trans. Tianjin Univ., 27, 127, 10.1007/s12209-020-00269-1
Sisi, 2020, J. Mol. Liq., 308
Tang, 2019, J. Am. Chem. Soc., 141, 7283, 10.1021/jacs.8b10910
Rezaei, 2019, Energy Fuels, 33, 6689, 10.1021/acs.energyfuels.9b00692
Taherian, 2017, Int. J. Hydrogen Energy, 42, 24811, 10.1016/j.ijhydene.2017.08.080
Boudjeloud, 2019, Int. J. Hydrogen Energy, 44, 9906, 10.1016/j.ijhydene.2019.01.140
Theofanidis, 2015, ACS Catal., 5, 3028, 10.1021/acscatal.5b00357
Kim, 2017, J. Am. Chem. Soc., 139, 1937, 10.1021/jacs.6b11487
Guo, 2010, J. Mol. Catal. A: Chem., 316, 1, 10.1016/j.molcata.2009.09.023
Jang, 2019, Catal. Today, 324, 15, 10.1016/j.cattod.2018.07.032
Bian, 2020, Renew. Sustain. Energy Rev., 134, 10.1016/j.rser.2020.110291
Rad, 2020, J. Hazard. Mater., 399, 10.1016/j.jhazmat.2020.123062
Rostami, 2020, J. Environ. Manage., 270, 10.1016/j.jenvman.2020.110843
Zhang, 2015, J. Fuel Chem. Technol., 43, 1359, 10.1016/S1872-5813(15)30040-2
Foppa, 2017, J. Am. Chem. Soc., 139, 17128, 10.1021/jacs.7b08984
Liu, 2009, J. Catal., 266, 380, 10.1016/j.jcat.2009.07.004
Orooji, 2017, Carbon, 111, 689, 10.1016/j.carbon.2016.10.055
Razmjou, 2012, Desalination, 287, 271, 10.1016/j.desal.2011.11.025
Park, 2019, Sci. Rep., 9, 1, 10.1038/s41598-018-37186-2
Doustkhah, 2021, Chem. Soc. Rev., 50, 2927, 10.1039/C9CS00813F
Maleh, 2021, Chemosphere, 132928
Albooyeh, 2016, Mech. Adv. Comp. Struct., 3, 73
Kalantari, 2017, Rare Met., 36, 942, 10.1007/s12598-016-0709-4
Yousefpour, 2013, Superlatt. Microstruct., 54, 78, 10.1016/j.spmi.2012.11.002
Taherian, 2020, Microporous Mesoporous Mater., 306, 10.1016/j.micromeso.2020.110455
Bian, 2021, ACS Appl. Nano Mater., 4, 1112, 10.1021/acsanm.0c02721
Liu, 2009, Appl. Catal. A, 358, 110, 10.1016/j.apcata.2008.12.044
Karimi-Maleh, 2020, Sci. Rep., 10, 1, 10.1038/s41598-020-68663-2
Orooji, 2020, J. Alloy. Compd.
Doustkhah, 2016, J. Colloid Interface Sci., 478, 280, 10.1016/j.jcis.2016.06.020
Doustkhah, 2017, ChemistrySelect, 2, 329, 10.1002/slct.201600624
Phichairatanaphong, 2021, Ind. Eng. Chem. Res., 60, 4562, 10.1021/acs.iecr.0c06355
Yasyerli, 2011, Int. J. Hydrogen Energy, 36, 4863, 10.1016/j.ijhydene.2011.01.120
Taherian, 2020, Renew. Sustain. Energy Rev., 134, 10.1016/j.rser.2020.110130
Amin, 2011, Int. J. Hydrogen Energy, 36, 2904, 10.1016/j.ijhydene.2010.11.035
Jung, 2021, Renew. Sustain. Energy Rev., 143, 10.1016/j.rser.2021.110949
Gao, 2018, Energy Convers. Manage., 171, 133, 10.1016/j.enconman.2018.05.083
Mondal, 2014, Int. J. Hydrogen Energy, 39, 9670, 10.1016/j.ijhydene.2014.04.087
Abrokwah, 2016, J. Mol. Catal. A: Chem., 425, 10, 10.1016/j.molcata.2016.09.019
Boyano, 2012, J. Cleaner Prod., 20, 152, 10.1016/j.jclepro.2011.07.027
Kaiwen, 2018, Energy Sources Part B: Econ. Plann. Policy, 13, 109, 10.1080/15567249.2017.1387619
Xue, 2019, J. Mater. Chem. A, 7, 1700, 10.1039/C8TA10414J
Ruocco, 2020, 1
Salam, 2020, Adv. Chem. Eng. Sci., 10, 259, 10.4236/aces.2020.104018
Konsolakis, 2016, Catalysts, 6, 39, 10.3390/catal6030039
Beheshti-Askari, 2020, ACS Catal.
Fakeeha, 2018, Can. J. Chem. Eng., 96, 955, 10.1002/cjce.23032
El Hassan, 2016, Appl. Catal. A: Gener., 520, 114, 10.1016/j.apcata.2016.04.014
Gangurde, 2018, Chem. Eng. Process.-Process Intensif., 127, 178, 10.1016/j.cep.2018.03.024
Zhu, 2018, Chem. Eng. Commun., 205, 888, 10.1080/00986445.2017.1423065
Ballarini, 2012, Appl. Catal. A: Gen., 433, 1, 10.1016/j.apcata.2012.04.037
Zhao, 2019, Green Energy Environ., 4, 300, 10.1016/j.gee.2018.11.002
Ma, 2009, Catal. Today, 148, 221, 10.1016/j.cattod.2009.08.015
Ferreira-Aparicio, 1998, Appl. Catal. A, 170, 177, 10.1016/S0926-860X(98)00048-9
Erdohelyi, 1993, J. Catal., 141, 287, 10.1006/jcat.1993.1136
Wei, 2011, Front. Chem. Sci. Eng., 5, 2, 10.1007/s11705-010-0528-3
Aramouni, 2017, Energy Convers. Manage., 150, 614, 10.1016/j.enconman.2017.08.056
Shen, 2020, Catal. Sci. Technol., 10, 510, 10.1039/C9CY02093D
Zuo, 2018, ACS Catal., 8, 9821, 10.1021/acscatal.8b02277
Pizzolitto, 2020, ACS Sustain. Chem. Eng., 8, 10756
Yan, 2019, Appl. Catal. B, 246, 221, 10.1016/j.apcatb.2019.01.070
Meloni, 2020, Catalysts, 10, 352, 10.3390/catal10030352
Pakhare, 2014, Chem. Soc. Rev., 43, 7813, 10.1039/C3CS60395D
Chong, 2019, Appl. Catal. A, 584, 10.1016/j.apcata.2019.117174
Li, 2018, ACS Appl. Mater. Interfaces, 10, 29435, 10.1021/acsami.8b07896
Daneshmand-Jahromi, 2017, Catalysts, 7, 286, 10.3390/catal7100286
Daneshmand-Jahromi, 2018, J. Taiwan Inst. Chem. Eng., 89, 129, 10.1016/j.jtice.2018.04.028
Meshksar, 2018, Catalysts, 8, 18, 10.3390/catal8010018
Liu, 2020, ACS Appl. Energy Mater.
Wang, 2013, Catal. Today, 212, 98, 10.1016/j.cattod.2012.07.022
Lovell, 2014, Appl. Catal. A, 473, 51, 10.1016/j.apcata.2013.12.020
Aguiar, 2018, Int. J. Hydrogen Energy, 44, 32003
Lee, 2014, Catal. Today, 232, 139, 10.1016/j.cattod.2014.03.037
Lee, 2013, Int. J. Energy Res., 37, 1896, 10.1002/er.3009
Witpathomwong, 2011, Energy Procedia, 9, 245, 10.1016/j.egypro.2011.09.026
Kaydouh, 2016, Microporous Mesoporous Mater., 220, 99, 10.1016/j.micromeso.2015.08.034
Omoregbe, 2017, Int. J. Hydrogen Energy, 42, 11283, 10.1016/j.ijhydene.2017.03.146
Lim, 2007, Catal. Today, 123, 122, 10.1016/j.cattod.2007.03.005
Han, 2017, Appl. Catal. B, 203, 625, 10.1016/j.apcatb.2016.10.069
Wang, 2013, Int. J. Hydrogen Energy, 38, 9718, 10.1016/j.ijhydene.2013.05.097
Song, 2020, Science, 367, 777, 10.1126/science.aav2412
Das, 2017, Appl. Catal. A, 545, 113, 10.1016/j.apcata.2017.07.044
Ali, 2016, Int. J. Hydrogen Energy, 41, 22876, 10.1016/j.ijhydene.2016.08.200
Świrk, 2019, Int. J. Hydrogen Energy, 44, 274, 10.1016/j.ijhydene.2018.02.164
Abdullah, 2020, Int. J. Hydrogen Energy
Hongmanorom, 2020, J. Catal.
Qian, 2014, Fuel, 122, 47, 10.1016/j.fuel.2013.12.062
Wang, 2012, Int. J. Hydrogen Energy, 37, 19, 10.1016/j.ijhydene.2011.03.138
Sun, 2005, Int. J. Hydrogen Energy, 30, 437, 10.1016/j.ijhydene.2004.11.005
Wang, 2020, Catalysts, 10, 38, 10.3390/catal10010038
Mukherjee, 2019, ACS Omega, 4, 4770, 10.1021/acsomega.9b00039
Orooji, 2020, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 234, 118272, 10.1016/j.saa.2020.118272
Taherian, 2017, Microporous Mesoporous Mater., 251, 9, 10.1016/j.micromeso.2017.05.027
Taherian, 2017, Int. J. Hydrogen Energy, 42, 16408, 10.1016/j.ijhydene.2017.05.095
Ligthart, 2011, Appl. Catal. A, 405, 108, 10.1016/j.apcata.2011.07.035
Al-Fatesh, 2014, Chin. J. Chem. Eng., 22, 28, 10.1016/S1004-9541(14)60029-X
Wu, 2009, Appl. Catal. B, 87, 152, 10.1016/j.apcatb.2008.09.003
Albarazi, 2013, Int. J. Hydrogen Energy, 38, 127, 10.1016/j.ijhydene.2012.10.063
Siang, 2017, Chem. Eng. Trans., 56, 1129
Taherian, 2020, Catal. Commun., 145, 10.1016/j.catcom.2020.106100
Gharahshiran, 2020, J. Ind. Eng. Chem.
Liu, 2012, Catal. Commun., 28, 168, 10.1016/j.catcom.2012.08.035
Xie, 2015, Int. J. Hydrogen Energy, 40, 9685, 10.1016/j.ijhydene.2015.06.008
Albarazi, 2015, Catal. Commun., 59, 108, 10.1016/j.catcom.2014.09.050
Tao, 2013, Chem. Eng. J., 221, 25, 10.1016/j.cej.2013.01.073
Newnham, 2012, Int. J. Hydrogen Energy, 37, 1454, 10.1016/j.ijhydene.2011.10.036
Huang, 2016, Catal. Sci. Technol., 6, 449, 10.1039/C5CY01171J
Xu, 2012, ACS Catal., 2, 1331, 10.1021/cs3001072
Xiang, 2016, Appl. Catal. A, 520, 140, 10.1016/j.apcata.2016.04.020
Calles, 2009, Microporous Mesoporous Mater., 119, 200, 10.1016/j.micromeso.2008.10.028
Sepehri, 2016, Int. J. Hydrogen Energy, 41, 8855, 10.1016/j.ijhydene.2016.03.139
Ghods, 2016, Int. J. Hydrogen Energy, 41, 22913, 10.1016/j.ijhydene.2016.10.020
Senseni, 2016, Int. J. Hydrogen Energy, 41, 20137, 10.1016/j.ijhydene.2016.08.046
Liu, 2012, Appl. Catal. B, 125, 324, 10.1016/j.apcatb.2012.06.003
Yousefpour, 2018, Int. J. Hydrogen Energy, 43, 7020, 10.1016/j.ijhydene.2018.02.139
Rivas, 2010, Catal. Today, 149, 388, 10.1016/j.cattod.2009.05.028
Quek, 2010, Appl. Catal. B, 95, 374, 10.1016/j.apcatb.2010.01.016
Vafaeian, 2013, Energy Convers. Manage., 76, 1093, 10.1016/j.enconman.2013.08.010
Gharahshiran, 2020, Molecular Catalysis, 484
Huo, 2017, J. Fuel Chem. Technol., 45, 172, 10.1016/S1872-5813(17)30012-9
Tannous, 2018, EDP Sciences, 01003
Zhang, 2013, ACS Catal., 3, 1855, 10.1021/cs400159w
Li, 2021, Chem. Eng. Sci., 245, 10.1016/j.ces.2021.116839
Song, 2021, Catal. Surv. Asia, 1
Zhang, 2018, Appl. Catal. B, 224, 488, 10.1016/j.apcatb.2017.11.001
Daoura, 2021, Appl. Catal. B: Environ., 280, 119417, 10.1016/j.apcatb.2020.119417
Das, 2020, ACS Appl. Energy Mater., 3, 7719, 10.1021/acsaem.0c01122
Chong, 2021, Catal. Today, 375, 245, 10.1016/j.cattod.2020.06.073
Wang, 2017, Chem. Eng. J., 313, 1370, 10.1016/j.cej.2016.11.055
Świrk, 2018, J. CO2 Util., 27, 247, 10.1016/j.jcou.2018.08.004
Taherian, 2021, J. Ind. Eng. Chem., 103, 187, 10.1016/j.jiec.2021.07.032
Huang, 2020, Appl. Catal. B, 275, 10.1016/j.apcatb.2020.119109
Bao, 2015, 1
Lu, 2021, ACS Catal., 11, 8749, 10.1021/acscatal.1c01299
Ding, 2019, Catalysts, 9, 606, 10.3390/catal9070606
Chong, 2020, Int. J. Hydrogen Energy
Damyanova, 2009, Appl. Catal. B, 92, 250, 10.1016/j.apcatb.2009.07.032
Xu, 2020, Int. J. Hydrogen Energy, 45, 30484, 10.1016/j.ijhydene.2020.08.050
Tian, 2019, Chin. J. Catal., 40, 1395, 10.1016/S1872-2067(19)63403-0
Al-Fatesh, 2019, Renewable Energy, 140, 658, 10.1016/j.renene.2019.03.082
Arbag, 2010, Int. J. Hydrogen Energy, 35, 2296, 10.1016/j.ijhydene.2009.12.109
Han, 2018, J. Mat. Chem. A, 6, 19912, 10.1039/C8TA06529B
Han, 2021, J. Clean. Prod., 318, 128544, 10.1016/j.jclepro.2021.128544
Li, 2021, Environ. Res., 112544
Zou, 2021, J. Power Sources, 484, 229249, 10.1016/j.jpowsour.2020.229249