Dynamic offloading for energy-aware scheduling in a mobile cloud

Junwen Lu1, Yongsheng Hao2,3, Kesou Wu1, Yuming Chen1,4, Qin Wang2
1School of Computer and Information Engineering, Xiamen University of Technology, 361024, China
2Network Center, Nanjing University of Information Science & Technology, Nanjing, China
3Nanjing University of Information Science & Technology, School of Mathematics & Statistics, Nanjing 210044, China
4E-success Information Technology Co., Ltd, Xiamen 361024, China

Tài liệu tham khảo

Akherfi, 2018, Mobile cloud computing for computation offloading: Issues and challenges, Appl. Comput. Informatics, 14, 1, 10.1016/j.aci.2016.11.002 Aljabri, 2013, Scheduling Manager for Mobile Cloud Using, 02, 451 Armstrong, P., et al., 2010. Cloud Scheduler: a resource manager for distributed compute clouds, pp. 1–10. Baidas, 2021, Resource allocation for offloading-efficiency maximization in clustered NOMA-enabled mobile edge computing networks, Comput. Netw., 189, 107919, 10.1016/j.comnet.2021.107919 Cao, 2019, Joint computation and communication cooperation for energy-efficient mobile edge computing, IEEE Internet Things J., 6, 4188, 10.1109/JIOT.2018.2875246 O. Chabbouh, S. Ben Rejeb, Z. Choukair, and N. Agoulmine, “Offloading decision algorithm for 5G/HetNets cloud RAN,” 2016 24th Int. Conf. Software, Telecommun. Comput. Networks, SoftCOM 2016, 2016, doi: 10.1109/SOFTCOM.2016.7772164. Chen, 2021, Robust Computation Offloading and Resource Scheduling in Cloudlet-Based Mobile Cloud Computing, IEEE Trans. Mob. Comput., 20, 2025, 10.1109/TMC.2020.2973993 Chen, 2018, Computation Peer Offloading for Energy-Constrained Mobile Edge Computing in Small-Cell Networks, IEEE/ACM Trans. Netw., 26, 1619, 10.1109/TNET.2018.2841758 Dai, 2021, Vehicle Assisted Computing Offloading for Unmanned Aerial Vehicles in Smart City, IEEE Trans. Intell. Transp. Syst., 22, 1932, 10.1109/TITS.2021.3052979 Ekman, 2019, Trials of 60 GHz Radio for a Future 5G New Radio (NR) Solution for High Capacity CCTV Offload and Multimedia Transfer, IEEE Int. Symp. Broadband Multimed. Syst. Broadcast. BMSB, vol, 2019-June Ec. Ervo, A. Wolman, L. Cox, S. Saroiu, M. Musuvathi, and A. Razeen, “Demo: Kahawai: High-quality mobile gaming using GPU offload,” MobiSys 2014 - Proc. 12th Annu. Int. Conf. Mob. Syst. Appl. Serv., p. 345, 2014, doi: 10.1145/2594368.2601482. Fernando, N., Loke, S.W., Rahayu, W., 2013. Honeybee: A programming framework for mobile crowd computing. Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng. LNICST, 120 LNICST (January), 224–236. doi: 10.1007/978-3-642-40238-8_19. Guo, 2019, Energy-Efficient Dynamic Computation Offloading and Cooperative Task Scheduling in Mobile Cloud Computing, IEEE Trans. Mob. Comput., 18, 319, 10.1109/TMC.2018.2831230 Hao, 2015, Evaluation of nine heuristic algorithms with data-intensive jobs and computing-intensive jobs in a dynamic environment, IET Softw., 9, 7, 10.1049/iet-sen.2014.0014 Hao, 2015, Performance Analysis of Gang Scheduling in a Grid, J. Netw. Syst. Manag., 23, 650, 10.1007/s10922-014-9312-x Hao, 2018, Energy Efficient Task Caching and Offloading for Mobile Edge Computing, IEEE Access, 6, 11365, 10.1109/ACCESS.2018.2805798 Hao, 2019, Adaptive energy-aware scheduling method in a meteorological cloud, Futur. Gener. Comput. Syst., 101, 1142, 10.1016/j.future.2019.07.061 Hao, 2021, Energy-aware offloading based on priority in mobile cloud computing, Sustain. Comput. Informatics Syst., 31, 100563, 10.1016/j.suscom.2021.100563 Hosseini, 2022, Optimized task scheduling for cost-latency trade-off in mobile fog computing using fuzzy analytical hierarchy process, Comput. Networks, 206, 108752, 10.1016/j.comnet.2021.108752 Huda, 2022, Survey on computation offloading in UAV-Enabled mobile edge computing, J. Netw. Comput. Appl., 201, 103341, 10.1016/j.jnca.2022.103341 Khan, 2015, A survey of computation offloading strategies for performance improvement of applications running on mobile devices, J. Netw. Comput. Appl., 56, 28, 10.1016/j.jnca.2015.05.018 Khan, 2012, A goal programming based energy efficient resource allocation in data centers, J. Supercomput., 61, 502, 10.1007/s11227-011-0611-7 Kim, 2020, Signal Strength-Aware Adaptive Offloading with Local Image Preprocessing for Energy Efficient Mobile Devices, IEEE Trans. Comput., 69, 99, 10.1109/TC.2019.2939239 Kim, 2018, An Optimal Pricing Scheme for the Energy-Efficient Mobile Edge Computation Offloading with OFDMA, IEEE Commun. Lett., 22, 1922, 10.1109/LCOMM.2018.2849401 J. Kołodziej et al., “An application of Markov jump process model for activity-based indoor Mobility Prediction in wireless networks,” Proc. - 2011 9th Int. Conf. Front. Inf. Technol. FIT 2011, pp. 51–56, 2011, doi: 10.1109/FIT.2011.17. Li, C., Li, L., 2011. Tradeoffs between energy consumption and QoS in mobile grid, 55(3). Li, 2020, Energy-Efficient UAV-Assisted Mobile Edge Computing: Resource Allocation and Trajectory Optimization, IEEE Trans. Veh. Technol., 69, 3424, 10.1109/TVT.2020.2968343 Li, 2015, Heuristics to allocate high-performance cloudlets for computation offloading in mobile ad hoc clouds, J. Supercomput., 71, 3009, 10.1007/s11227-015-1425-9 Li, 2019, Offloading and system resource allocation optimization in TDMA based wireless powered mobile edge computing, J. Syst. Archit., 98, 221, 10.1016/j.sysarc.2019.07.009 Lin, 2015, Time-and-energy-aware computation offloading in handheld devices to coprocessors and clouds, IEEE Syst. J., 9, 393, 10.1109/JSYST.2013.2289556 Lin, 2021, A Novel Lyapunov based Dynamic Resource Allocation for UAVs-assisted Edge Computing, Comput. Netw., 205, 2022 Lindberg, 2012, “Comparison and Analysis of Greedy Energy-Efficient Scheduling Algorithms for Computational Grids”, Energy-Efficient Distrib, Comput. Syst., 189 Lu, 2020, Mildip: An energy efficient code offloading framework in mobile cloudlets, Inf. Sci. (Ny), 513, 84, 10.1016/j.ins.2019.10.008 Lyu, 2018, Energy-Efficient Admission of Delay-Sensitive Tasks for Mobile Edge Computing, IEEE Trans. Commun., 66, 2603, 10.1109/TCOMM.2018.2799937 Ma, 2021, Poster: Adaptive video offloading in mobile edge computing, Proc. - Int. Conf. Distrib. Comput. Syst., vol. 2021-July, 1130 Masoudi, 2021, Device vs Edge Computing for Mobile Services: Delay-Aware Decision Making to Minimize Power Consumption, IEEE Trans. Mob. Comput., 20, 3324, 10.1109/TMC.2020.2999784 N. Min-allah, Y. Wang, J. Xing, W. Nisar, and A. Kazmi, “Towards Dynamic Voltage Scaling in Real-Time Systems-A Survey,” Int. J. Comput. Sci. Eng. Syst., vol. 1, no. 2, pp. 93–104, 2007, [Online]. Available: http://en.scientificcommons.org/42383068. Opadere, J., Liu, Q., Zhang, N., Han, T., 2019. Joint Computation and Communication Resource Allocation for Energy-Efficient Mobile Edge Networks. IEEE Int. Conf. Commun., 2019-May (3), 4188–4200. doi: 10.1109/ICC.2019.8761886. Páll, S., Schultz, R., 2019. Advances in the OpenCL offload support in GROMACS. In: ACM Int. Conf. Proceeding Ser., p. 3318176, 2019, doi: 10.1145/3318170.3318176. Papathanail, G., et al., 2020. COSMOS: An Orchestration Framework for Smart Computation Offloading in Edge Clouds. Proc. IEEE/IFIP Netw. Oper. Manag. Symp. 2020 Manag. Age Softwarization Artif. Intell. NOMS 2020, April, 2020. doi: 10.1109/NOMS47738.2020.9110294. Salmani, 2020, Uplink resource allocation for multiple access computational offloading, Signal Process., 168, 107322, 10.1016/j.sigpro.2019.107322 Y. Tao, Y. Zhang, and Y. Ji, “Efficient computation offloading strategies for mobile cloud computing,” Proc. - Int. Conf. Adv. Inf. Netw. Appl. AINA, vol. 2015-April, pp. 626–633, 2015, doi: 10.1109/AINA.2015.246. Tuli, 2020, Shared data-aware dynamic resource provisioning and task scheduling for data intensive applications on hybrid clouds using Aneka, Futur. Gener. Comput. Syst., 106, 595, 10.1016/j.future.2020.01.038 Wan, 2021, Joint computation offloading and resource allocation for NOMA-based multi-access mobile edge computing systems, Comput. Netw., 196, 108256, 10.1016/j.comnet.2021.108256 Wang, 2021, Collaborative Mobile Computation Offloading to Vehicle-Based Cloudlets, IEEE Trans. Veh. Technol., 70, 768, 10.1109/TVT.2020.3043296 Wang, 2022, Computation offloading and resource allocation based on distributed deep learning and software defined mobile edge computing, Comput. Netw., 205, 108732, 10.1016/j.comnet.2021.108732 Wang, 2022, Computation offloading and resource allocation based on distributed deep learning and software defined mobile edge computing, Comput. Netw., 205, 108732, 10.1016/j.comnet.2021.108732 Wang, 2018, Efficient multi-tasks scheduling algorithm in mobile cloud computing with time constraints, Peer-to-Peer Netw. Appl., 11, 793, 10.1007/s12083-017-0561-9 Wu, 2018, Android Unikernel: Gearing mobile code offloading towards edge computing, Futur. Gener. Comput. Syst., 86, 694, 10.1016/j.future.2018.04.069 Xu, 2021, Energy-Aware Inference Offloading for DNN-Driven Applications in Mobile Edge Clouds, IEEE Trans. Parallel Distrib. Syst., 32, 799, 10.1109/TPDS.2020.3032443 Yang, 2021, Offloading Time Optimization via Markov Decision Process in Mobile-Edge Computing, IEEE Internet Things J., 8, 2483, 10.1109/JIOT.2020.3033285 Yu, 2020, A Socially-Aware Hybrid Computation Offloading Framework for Multi-Access Edge Computing, IEEE Trans. Mob. Comput., 19, 1247, 10.1109/TMC.2019.2908154 Zhang, 2022, Optimal pricing-based computation offloading and resource allocation for blockchain-enabled beyond 5G networks, Comput. Netw., 203, 108674, 10.1016/j.comnet.2021.108674 Zhang, 2013, Energy-efficient scheduling policy for collaborative execution in mobile cloud computing, Proc. - IEEE INFOCOM, 190 Zhang, 2014, Toward transcoding as a service: Energy-efficient offloading policy for green mobile cloud, IEEE Netw., 28, 67, 10.1109/MNET.2014.6963807