Coloring graphs characterized by a forbidden subgraph
Tài liệu tham khảo
Arnborg, 1989, Linear time algorithms for NP-hard problems restricted to partial k-trees, Discrete Appl. Math., 23, 11, 10.1016/0166-218X(89)90031-0
Bienstock, 1991, Quickly excluding a forest, J. Combin. Theory Ser. B, 52, 274, 10.1016/0095-8956(91)90068-U
Broersma, 2012, Updating the complexity status of coloring graphs without a fixed induced linear forest, Theoret. Comput. Sci., 414, 9, 10.1016/j.tcs.2011.10.005
Chlebík, 2006, Hard coloring problems in low degree planar bipartite graphs, Discrete Appl. Math., 154, 1960, 10.1016/j.dam.2006.03.014
Chudnovsky, 2006, The strong perfect graph theorem, Ann. of Math., 164, 51, 10.4007/annals.2006.164.51
Diestel, 2012, vol. 173
Garey, 1976, Some simplified NP-complete graph problems, Theoret. Comput. Sci., 1, 237, 10.1016/0304-3975(76)90059-1
Golovach, 2013, 4-coloring H-free graphs when H is small, Discrete Appl. Math., 161, 140, 10.1016/j.dam.2012.08.022
Grötschel, 1984, Polynomial algorithms for perfect graphs, Ann. Discrete Math., 21, 325
Huang, 2013, Improved complexity results on k-coloring Pt-free graphs, vol. 8087, 551
Kamiński, 2007, Coloring edges and vertices of graphs without short or long cycles, Contrib. Discrete Math., 2, 61
Kamiński, 2007, Vertex 3-colorability of claw-free graphs, Algorithmic Oper. Res., 2, 15
Král’, 2001, Complexity of coloring graphs without forbidden induced subgraphs, vol. 2204, 254
Lokshtanov, 2014, Independent set in P5-free graphs in polynomial time, 570
L. Lovász, Coverings and coloring of hypergraphs, in: Proceedings of the Fourth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Utilitas Math., Winnipeg, Man., 1973, pp. 3–12.
Maffray, 1996, On the NP-completeness of the k-colorability problem for triangle-free graphs, Discrete Math., 162, 313, 10.1016/S0012-365X(97)89267-9
Randerath, 2004, Vertex colouring and forbidden subgraphs—a survey, Graphs Combin., 20, 1, 10.1007/s00373-003-0540-1
Tuza, 1997, Graph colorings with local restrictions–a survey, Discuss. Math. Graph Theory, 17, 161, 10.7151/dmgt.1049