Ion Exchange Membranes in Electrochemical CO2 Reduction Processes
Tóm tắt
The low-temperature electrolysis of CO2 in membrane-based flow reactors is a promising technology for converting captured CO2 into valuable chemicals and fuels. In recent years, substantial improvements in reactor design have significantly improved the economic viability of this technology; thus, the field has experienced a rapid increase in research interest. Among the factors related to reactor design, the ion exchange membrane (IEM) plays a prominent role in the energetic efficiency of CO2 conversion into useful products. Reactors utilizing cation exchange, anion exchange and bipolar membranes have all been developed, each providing unique benefits and challenges that must be overcome before large-scale commercialization is feasible. Therefore, to direct advances in IEM technology specific to electrochemical CO2 reduction reactions (CO2RRs), this review serves to first provide polymer scientists with a general understanding of membrane-based CO2RR reactors and membrane-related shortcomings and to encourage systematic synthetic approaches to develop membranes that meet the specific requirements of CO2RRs. Second, this review provides researchers in the fields of electrocatalysis and CO2RRs with more detailed insight into the often-overlooked membrane roles and requirements; thus, new methodologies for membrane evaluation during CO2RR may be developed. By using CO2-to-CO/HCOO− methodologies as practical baseline systems, a clear conceptualization of the merits and challenges of different systems and reasonable objectives for future research and development are presented.
Tài liệu tham khảo
Chu, S.: Carbon capture and sequestration. Science 325, 1599 (2009). https://doi.org/10.1126/science.1181637
Beuttler, C., Charles, L., Wurzbacher, J.: The role of direct air capture in mitigation of anthropogenic greenhouse gas emissions. Front. Clim. 1, 10 (2019). https://doi.org/10.3389/fclim.2019.00010
Al-Mamoori, A., Krishnamurthy, A., Rownaghi, A.A., et al.: Carbon capture and utilization update. Energy Technol. 5, 834–849 (2017). https://doi.org/10.1002/ente.201600747
Baena-Moreno, F.M., Rodríguez-Galán, M., Vega, F., et al.: Carbon capture and utilization technologies: a literature review and recent advances. Energy Sources A Recovery Util Environ. Eff. 41, 1403–1433 (2019)
Chemistry Industry Association of Canada: Chemistry: essential to Canada’s transition to a low-carbon energy future. https://canadianchemistry.ca/wp-content/uploads/2021/09/CIAC_LowCarbonPaper_English_June2019_FINAL.pdf (2018)
Ravanchi, M.T., Sahebdelfar, S.: Carbon dioxide capture and utilization in petrochemical industry: potentials and challenges. Appl. Petrochem. Res. 4, 63–77 (2014)
Griffin, P.W., Hammond, G.P., Norman, J.B.: Industrial energy use and carbon emissions reduction in the chemicals sector: a UK perspective. Appl. Energy 227, 587–602 (2018). https://doi.org/10.1016/j.apenergy.2017.08.010
De Luna, P., Hahn, C., Higgins, D., et al.: What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019)
Teeter, T.E., Van Rysselberghe, P.: Reduction of carbon dioxide on mercury cathodes. J. Chem. Phys. 22, 759–760 (1954). https://doi.org/10.1063/1.1740178
Russell, P.G., Kovac, N., Srinivasan, S., et al.: The electrochemical reduction of carbon dioxide, formic acid, and formaldehyde. J. Electrochem. Soc. 124, 1329–1338 (1977). https://doi.org/10.1149/1.2133624
Udupa, K.S., Subramanian, G.S., Udupa, H.V.K.: The electrolytic reduction of carbon dioxide to formic acid. Electrochim. Acta 16, 1593–1598 (1971). https://doi.org/10.1016/0013-4686(71)80028-2
Hori, Y., Kikuchi, K., Suzuki, S.: Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem. Lett. 14, 1695–1698 (1985). https://doi.org/10.1246/cl.1985.1695
Hori, Y., Kikuchi, K., Murata, A., et al.: Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution. Chem. Lett. 15, 897–898 (1986). https://doi.org/10.1246/cl.1986.897
Hori, Y., Murata, A., Takahashi, R., et al.: Enhanced formation of ethylene and alcohols at ambient temperature and pressure in electrochemical reduction of carbon dioxide at a copper electrode. J. Chem. Soc. Chem. Commun. 1, 17–19 (1988). https://doi.org/10.1039/c39880000017
Hori, Y., Wakebe, H., Tsukamoto, T., et al.: Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39, 1833–1839 (1994). https://doi.org/10.1016/0013-4686(94)85172-7
Hori, Y., Murata, A., Takahashi, R.: Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. Faraday Trans. 85, 2309 (1989). https://doi.org/10.1039/f19898502309
Hori, Y.: Electrochemical CO2 reduction on metal electrodes. In: Vayenas, C.G., White, R.E., Gamboa-Aldeco, M.E. (eds.) Modern Aspects of Electrochemistry, pp. 89–189. Springer, New York (2008)
Nitopi, S., Bertheussen, E., Scott, S.B., et al.: Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019). https://doi.org/10.1021/acs.chemrev.8b00705
Zhao, J., Xue, S., Barber, J., et al.: An overview of Cu-based heterogeneous electrocatalysts for CO2 reduction. J. Mater. Chem. A 8, 4700–4734 (2020). https://doi.org/10.1039/C9TA11778D
Usman, M., Humayun, M., Garba, M.D., et al.: Electrochemical reduction of CO2: a review of cobalt based catalysts for carbon dioxide conversion to fuels. Nanomaterials (Basel) 11, 2029 (2021)
Pei, Y.H., Zhong, H., Jin, F.M.: A brief review of electrocatalytic reduction of CO2: materials, reaction conditions, and devices. Energy Sci. Eng. 9, 1012–1032 (2021). https://doi.org/10.1002/ese3.935
Liu, A.M., Gao, M.F., Ren, X.F., et al.: Current progress in electrocatalytic carbon dioxide reduction to fuels on heterogeneous catalysts. J. Mater. Chem. A 8, 3541–3562 (2020). https://doi.org/10.1039/C9TA11966C
Zhang, X.L., Guo, S.X., Gandionco, K.A., et al.: Electrocatalytic carbon dioxide reduction: from fundamental principles to catalyst design. Mater. Today. Adv. 7, 100074 (2020). https://doi.org/10.1016/j.mtadv.2020.100074
Lees, E.W., Mowbray, B.A.W., Parlane, F.G.L., et al.: Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nat. Rev. Mater. 7, 55–64 (2022). https://doi.org/10.1038/s41578-021-00356-2
Ye, K., Zhang, G.R., Ma, X.Y., et al.: Resolving local reaction environment toward an optimized CO2-to-CO conversion performance. Energy Environ. Sci. 15, 749–759 (2022). https://doi.org/10.1039/D1EE02966E
Li, H., Oloman, C.: Development of a continuous reactor for the electro-reduction of carbon dioxide to formate. Part 2. Scale-up. J. Appl. Electrochem. 37, 1107–1117 (2007). https://doi.org/10.1007/s10800-007-9371-8
Subramanian, K., Asokan, K., Jeevarathinam, D., et al.: Electrochemical membrane reactor for the reduction of carbon dioxide to formate. J. Appl. Electrochem. 37, 255–260 (2007). https://doi.org/10.1007/s10800-006-9252-6
Weekes, D.M., Salvatore, D.A., Reyes, A., et al.: Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 51, 910–918 (2018). https://doi.org/10.1021/acs.accounts.8b00010
Zhang, M., Wei, W.B., Zhou, S.H., et al.: Engineering a conductive network of atomically thin bismuthene with rich defects enables CO2 reduction to formate with industry-compatible current densities and stability. Energy Environ. Sci. 14, 4998–5008 (2021). https://doi.org/10.1039/D1EE01495A
Delacourt, C., Ridgway, P.L., Kerr, J.B., et al.: Design of an electrochemical cell making syngas (CO + H2) from CO2 and H2O reduction at room temperature. J. Electrochem. Soc. 155, B42 (2008). https://doi.org/10.1149/1.2801871
Narayanan, S.R., Haines, B., Soler, J., et al.: Electrochemical conversion of carbon dioxide to formate in alkaline polymer electrolyte membrane cells. J. Electrochem. Soc. 158, A167 (2011). https://doi.org/10.1149/1.3526312
Whipple, D.T., Finke, E.C., Kenis, P.J.A.: Microfluidic reactor for the electrochemical reduction of carbon dioxide: the effect of pH. Electrochem. Solid State Lett. 13, B109 (2010). https://doi.org/10.1149/1.3456590
Shironita, S., Karasuda, K., Sato, K., et al.: Methanol generation by CO2 reduction at a Pt–Ru/C electrocatalyst using a membrane electrode assembly. J. Power Sources 240, 404–410 (2013). https://doi.org/10.1016/j.jpowsour.2013.04.034
Lee, S., Ocon, J.D., Son, Y.I., et al.: Alkaline CO2 electrolysis toward selective and continuous HCOO– production over SnO2 nanocatalysts. J. Phys. Chem. C 119, 4884–4890 (2015). https://doi.org/10.1021/jp512436w
Surya Prakash, G.K., Viva, F.A., Olah, G.A.: Electrochemical reduction of CO2 over Sn-Nafion® coated electrode for a fuel-cell-like device. J. Power Sources 223, 68–73 (2013). https://doi.org/10.1016/j.jpowsour.2012.09.036
Li, Y.C., Zhou, D.K., Yan, Z.F., et al.: Electrolysis of CO2 to syngas in bipolar membrane-based electrochemical cells. ACS Energy Lett. 1, 1149–1153 (2016). https://doi.org/10.1021/acsenergylett.6b00475
Masel, R.I., Liu, Z.C., Sajjad, S.: Anion exchange membrane electrolyzers showing 1 A cm–2 at less than 2 V. ECS Trans. 75, 1143–1146 (2016). https://doi.org/10.1149/07514.1143ecst
Shao, B., Zhang, Y., Sun, Z.Y., et al.: CO2 capture and in-situ conversion: recent progresses and perspectives. Green Chem. Eng. 3, 189–198 (2022). https://doi.org/10.1016/j.gce.2021.11.009
Matin, A.J., Larrazábal, G.O., Pérez-Ramírez, J.: Towards sustainable fuels and chemicals through the electrochemical reduction of CO2: lessons from water electrolysis. Green Chem. 17, 5114–5130 (2015). https://doi.org/10.1039/C5GC01893E
Hydrogen and Fuel Cell Technologies Office: DOE technical targets for hydrogen production from electrolysis. https://www.energy.gov/eere/fuelcells/hydrogen-production-electrolysis
Verma, S., Kim, B., Jhong, H.R.M., et al.: A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. ChemSusChem 9, 1972–1979 (2016). https://doi.org/10.1002/cssc.201600394
Bushuyev, O.S., De Luna, P., Dinh, C.T., et al.: What should we make with CO2 and how can we make it? Joule 2, 825–832 (2018). https://doi.org/10.1016/j.joule.2017.09.003
Jouny, M., Luc, W., Jiao, F.: General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018). https://doi.org/10.1021/acs.iecr.7b03514
Verma, S., Lu, S., Kenis, P.J.A.: Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nat. Energy 4, 466–474 (2019). https://doi.org/10.1038/s41560-019-0374-6
Yadegari, H., Ozden, A., Alkayyali, T., et al.: Glycerol oxidation pairs with carbon monoxide reduction for low-voltage generation of C2 and C3 product streams. ACS Energy Lett. 6, 3538–3544 (2021). https://doi.org/10.1021/acsenergylett.1c01639
Endrődi, B., Kecsenovity, E., Samu, A., et al.: High carbonate ion conductance of a robust PiperION membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell. Energy Environ. Sci. 13, 4098–4105 (2020). https://doi.org/10.1039/D0EE02589E
Liang, S.Y., Altaf, N., Huang, L., et al.: Electrolytic cell design for electrochemical CO2 reduction. J. CO2 Util. 35, 90–105 (2020). https://doi.org/10.1016/j.jcou.2019.09.007
Chaplin, R.P.S., Wragg, A.A.: Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation. J. Appl. Electrochem. 33, 1107–1123 (2003). https://doi.org/10.1023/B:JACH.0000004018.57792.b8
Varela, A.S.: The importance of pH in controlling the selectivity of the electrochemical CO2 reduction. Curr. Opin. Green Sustain. Chem. 26, 100371 (2020). https://doi.org/10.1016/j.cogsc.2020.100371
Zhang, Z.S., Melo, L., Jansonius, R.P., et al.: pH matters when reducing CO2 in an electrochemical flow cell. ACS Energy Lett. 5, 3101–3107 (2020). https://doi.org/10.1021/acsenergylett.0c01606
Vennekoetter, J.B., Sengpiel, R., Wessling, M.: Beyond the catalyst: how electrode and reactor design determine the product spectrum during electrochemical CO2 reduction. Chem. Eng. J. 364, 89–101 (2019). https://doi.org/10.1016/j.cej.2019.01.045
Varcoe, J.R., Atanassov, P., Dekel, D.R., et al.: Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci. 7, 3135–3191 (2014). https://doi.org/10.1039/C4EE01303D
Du, N.Y., Roy, C., Peach, R., et al.: Anion-exchange membrane water electrolyzers. Chem. Rev. 122, 11830–11895 (2022). https://doi.org/10.1021/acs.chemrev.1c00854
Vermaas, D.A., Smith, W.A.: Synergistic electrochemical CO2 reduction and water oxidation with a bipolar membrane. ACS Energy Lett. 1, 1143–1148 (2016). https://doi.org/10.1021/acsenergylett.6b00557
Pärnamäe, R., Mareev, S., Nikonenko, V., et al.: Bipolar membranes: a review on principles, latest developments, and applications. J. Membr. Sci. 617, 118538 (2021). https://doi.org/10.1016/j.memsci.2020.118538
Oener, S.Z., Foster, M.J., Boettcher, S.W.: Accelerating water dissociation in bipolar membranes and for electrocatalysis. Science 369, 1099–1103 (2020). https://doi.org/10.1126/science.aaz1487
Hohenadel, A., Powers, D., Wycisk, R., et al.: Electrochemical characterization of hydrocarbon bipolar membranes with varying junction morphology. ACS Appl. Energy Mater. 2, 6817–6824 (2019). https://doi.org/10.1021/acsaem.9b01257
Li, T.F., Lees, E.W., Zhang, Z.S., et al.: Conversion of bicarbonate to formate in an electrochemical flow reactor. ACS Energy Lett. 5, 2624–2630 (2020). https://doi.org/10.1021/acsenergylett.0c01291
Küngas, R.: Review—electrochemical CO2 reduction for CO production: comparison of low- and high-temperature electrolysis technologies. J. Electrochem. Soc. 167, 044508 (2020). https://doi.org/10.1149/1945-7111/ab7099
Salvatore, D.A., Gabardo, C.M., Reyes, A., et al.: Designing anion exchange membranes for CO2 electrolysers. Nat. Energy 6, 339–348 (2021). https://doi.org/10.1038/s41560-020-00761-x
Chen, N.J., Wang, H.H., Kim, S.P., et al.: Poly(fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells. Nat. Commun. 12, 2367 (2021). https://doi.org/10.1038/s41467-021-22612-3
Ran, J., Wu, L., He, Y.B., et al.: Ion exchange membranes: new developments and applications. J. Membr. Sci. 522, 267–291 (2017). https://doi.org/10.1016/j.memsci.2016.09.033
Dang, H.S., Jannasch, P.: A comparative study of anion-exchange membranes tethered with different hetero-cycloaliphatic quaternary ammonium hydroxides. J. Mater. Chem. A 5, 21965–21978 (2017). https://doi.org/10.1039/C7TA06029G
Kusoglu, A., Weber, A.Z.: New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev. 117, 987–1104 (2017). https://doi.org/10.1021/acs.chemrev.6b00159
Duarte, M., De Mot, B., Hereijgers, J., et al.: Electrochemical reduction of CO2: effect of convective CO2 supply in gas diffusion electrodes. ChemElectroChem 6, 5596–5602 (2019). https://doi.org/10.1002/celc.201901454
Zhang, X., Li, J.C., Li, Y.Y., et al.: Selective and high current CO2 electro-reduction to multicarbon products in near-neutral KCl electrolytes. J. Am. Chem. Soc. 143, 3245–3255 (2021). https://doi.org/10.1021/jacs.0c13427
Sen, S., Brown, S.M., Leonard, M., et al.: Electroreduction of carbon dioxide to formate at high current densities using tin and tin oxide gas diffusion electrodes.J. Appl. Electrochem. 49, 917–928 (2019). https://doi.org/10.1007/s10800-019-01332-z
Gabardo, C.M., O’Brien, C.P., Edwards, J.P., et al.: Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 3, 2777–2791 (2019). https://doi.org/10.1016/j.joule.2019.07.021
Kaczur, J.J., Yang, H.Z., Liu, Z.C., et al.: Carbon dioxide and water electrolysis using new alkaline stable anion membranes. Front. Chem. 6, 263 (2018). https://doi.org/10.3389/fchem.2018.00263
Chen, K.J., Cao, M.Q., Lin, Y.Y., et al.: Ligand engineering in nickel phthalocyanine to boost the electrocatalytic reduction of CO2. Adv. Funct. Mater. 32, 2111322 (2022). https://doi.org/10.1002/adfm.202111322
Lees, E.W., Goldman, M., Fink, A.G., et al.: Electrodes designed for converting bicarbonate into CO. ACS Energy Lett. 5, 2165–2173 (2020). https://doi.org/10.1021/acsenergylett.0c00898
Ramdin, M., Morrison, A.R.T., de Groen, M., et al.: High pressure electrochemical reduction of CO2 to formic acid/formate: a comparison between bipolar membranes and cation exchange membranes. Ind. Eng. Chem. Res. 58, 1834–1847 (2019). https://doi.org/10.1021/acs.iecr.8b04944
He, G.W., Li, Z., Zhao, J., et al.: Nanostructured ion-exchange membranes for fuel cells: recent advances and perspectives. Adv. Mater. 27, 5280–5295 (2015). https://doi.org/10.1002/adma.201501406
Hou, Y., Liang, Y.L., Shi, P.C., et al.: Atomically dispersed Ni species on N-doped carbon nanotubes for electroreduction of CO2 with nearly 100% CO selectivity. Appl. Catal. B Environ. 271, 118929 (2020). https://doi.org/10.1016/j.apcatb.2020.118929
Zhou, Y., Zhou, R., Zhu, X.R., et al.: Mesoporous PdAg nanospheres for stable electrochemical CO2 reduction to formate. Adv. Mater. 32, e2000992 (2020). https://doi.org/10.1002/adma.202000992
Tang, J.K., Zhu, C.Y., Jiang, T.W., et al.: Anion exchange-induced single-molecule dispersion of cobalt porphyrins in a cationic porous organic polymer for enhanced electrochemical CO2 reduction via secondary-coordination sphere interactions. J. Mater. Chem. A 8, 18677–18686 (2020). https://doi.org/10.1039/D0TA07068H
Lv, X.M., Shang, L.M., Zhou, S., et al.: Electron-deficient Cu sites on Cu3Ag1 catalyst promoting CO2 electroreduction to alcohols. Adv. Energy Mater. 10, 2001987 (2020). https://doi.org/10.1002/aenm.202001987
Ma, W.C., Xie, S.J., Liu, T.T., et al.: Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 3, 478–487 (2020). https://doi.org/10.1038/s41929-020-0450-0
Sato, M., Ogihara, H., Yamanaka, I.: Electrocatalytic reduction of CO2 to CO and CH4 by Co–N–C catalyst and Ni co-catalyst with PEM reactor. ISIJ Int. 59, 623–627 (2019). https://doi.org/10.2355/isijinternational.isijint-2018-551
Zhang, Z.S., Lees, E.W., Ren, S.X., et al.: Conversion of reactive carbon solutions into CO at low voltage and high carbon efficiency. ACS Cent. Sci. 8, 749–755 (2022). https://doi.org/10.1021/acscentsci.2c00329
Ogungbemi, E., Ijaodola, O., Khatib, F.N., et al.: Fuel cell membranes: pros and cons. Energy 172, 155–172 (2019). https://doi.org/10.1016/j.energy.2019.01.034
junge Puring, K., Evers, O., Prokein, M., et al.: Assessing the influence of supercritical carbon dioxide on the electrochemical reduction to formic acid using carbon-supported copper catalysts. ACS Catal. 10, 12783–12789 (2020). https://doi.org/10.1021/acscatal.0c02983
Rasul, S., Pugnant, A., Xiang, H., et al.: Low cost and efficient alloy electrocatalysts for CO2 reduction to formate. J. CO2 Util. 32, 1–10 (2019). https://doi.org/10.1016/j.jcou.2019.03.016
Bose, S., Kuila, T., Nguyen, T.X.H., et al.: Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog. Polym. Sci. 36, 813–843 (2011). https://doi.org/10.1016/j.progpolymsci.2011.01.003
Gutiérrez-Guerra, N., Valverde, J.L., Romero, A., et al.: Electrocatalytic conversion of CO2 to added-value chemicals in a high-temperature proton-exchange membrane reactor. Electrochem. Commun. 81, 128–131 (2017). https://doi.org/10.1016/j.elecom.2017.06.018
Luo, T., Abdu, S., Wessling, M.: Selectivity of ion exchange membranes: a review. J. Membr. Sci. 555, 429–454 (2018). https://doi.org/10.1016/j.memsci.2018.03.051
Kamcev, J., Paul, D.R., Manning, G.S., et al.: Ion diffusion coefficients in ion exchange membranes: significance of counterion condensation. Macromolecules 51, 5519–5529 (2018). https://doi.org/10.1021/acs.macromol.8b00645
Thampan, T., Malhotra, S., Tang, H., et al.: Modeling of conductive transport in proton-exchange membranes for fuel cells. J. Electrochem. Soc. 147, 3242 (2000). https://doi.org/10.1149/1.1393890
Weng, L.C., Bell, A.T., Weber, A.Z.: Towards membrane-electrode assembly systems for CO2 reduction: a modeling study. Energy Environ. Sci. 12, 1950–1968 (2019). https://doi.org/10.1039/C9EE00909D
Peckham, T.J., Holdcroft, S.: Structure-morphology-property relationships of non-perfluorinated proton-conducting membranes. Adv. Mater. 22, 4667–4690 (2010). https://doi.org/10.1002/adma.201001164
DeLuca, N.W., Elabd, Y.A.: Polymer electrolyte membranes for the direct methanol fuel cell: a review. J. Polym. Sci. B Polym. Phys. 44, 2201–2225 (2006). https://doi.org/10.1002/polb.20861
Choi, P., Jalani, N.H., Datta, R.: Thermodynamics and proton transport in Nafion. J. Electrochem. Soc. 152, E123 (2005). https://doi.org/10.1149/1.1859814
Hickner, M.A.: Ion-containing polymers: new energy & clean water. Mater. Today 13, 34–41 (2010). https://doi.org/10.1016/S1369-7021(10)70082-1
Ersöz, M.: Diffusion and selective transport of alkali cations on cation-exchange membrane. Sep. Sci. Technol. 30, 3523–3533 (1995). https://doi.org/10.1080/01496399508015133
Liao, W.C., Tsai, D.H., Hong, W.Z., et al.: Enabling direct CO2 electrolysis by alkali metal cation substituted membranes in a gas diffusion electrode reactor. Chem. Eng. J. 434, 134765 (2022). https://doi.org/10.1016/j.cej.2022.134765
Huang, J.E., Li, F.W., Ozden, A., et al.: CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021). https://doi.org/10.1126/science.abg6582
Resasco, J., Chen, L.D., Clark, E., et al.: Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017). https://doi.org/10.1021/jacs.7b06765
Ringe, S., Clark, E.L., Resasco, J., et al.: Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12, 3001–3014 (2019). https://doi.org/10.1039/C9EE01341E
Alerte, T., Edwards, J.P., Gabardo, C.M., et al.: Downstream of the CO2 electrolyzer: assessing the energy intensity of product separation. ACS Energy Lett. 6, 4405–4412 (2021). https://doi.org/10.1021/acsenergylett.1c02263
Wang, N., MiaoLee, rkG., et al.: Suppressing the liquid product crossover in electrochemical CO2 reduction. SmartMat 2, 12–16 (2021). https://doi.org/10.1002/smm2.1018
Zhang, J., Luo, W., Züttel, A.: Crossover of liquid products from electrochemical CO2 reduction through gas diffusion electrode and anion exchange membrane. J. Catal. 385, 140–145 (2020). https://doi.org/10.1016/j.jcat.2020.03.013
Tschinder, T., Schaffer, T., Fraser, S.D., et al.: Electro-osmotic drag of methanol in proton exchange membranes. J. Appl. Electrochem. 37, 711–716 (2007). https://doi.org/10.1007/s10800-007-9304-6
Neburchilov, V., Martin, J., Wang, H.J., et al.: A review of polymer electrolyte membranes for direct methanol fuel cells. J. Power Sources 169, 221–238 (2007). https://doi.org/10.1016/j.jpowsour.2007.03.044
Heinzel, A., Barragán, V.M.: A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J. Power Sources 84, 70–74 (1999). https://doi.org/10.1016/S0378-7753(99)00302-X
Awang, N., Ismail, A.F., Jaafar, J., et al.: Functionalization of polymeric materials as a high performance membrane for direct methanol fuel cell: a review. React. Funct. Polym. 86, 248–258 (2015). https://doi.org/10.1016/j.reactfunctpolym.2014.09.019
Ahmad, H., Kamarudin, S.K., Hasran, U.A., et al.: Overview of hybrid membranes for direct-methanol fuel-cell applications. Int. J. Hydrog. Energy 35, 2160–2175 (2010). https://doi.org/10.1016/j.ijhydene.2009.12.054
Antonucci, P.L., Aricò, A.S., Cretı̀, P., et al.: Investigation of a direct methanol fuel cell based on a composite Nafion®-silica electrolyte for high temperature operation. Solid State Ion. 125, 431–437 (1999). https://doi.org/10.1016/S0167-2738(99)00206-4
Vaivars, G., Maxakato, N.W., Mokrani, T., et al.: Zirconium phosphate based inorganic direct methanol fuel cell. Mater. Sci. 10, 162–165 (2004)
Rao, A.S., Rashmi, K.R., Manjunatha, D.V., et al.: Methanol crossover reduction and power enhancement of methanol fuel cells with polyvinyl alcohol coated Nafion membranes. Mater. Today Proc. 35, 344–351 (2021). https://doi.org/10.1016/j.matpr.2020.02.093
Chabi, S., Papadantonakis, K.M., Lewis, N.S., et al.: Membranes for artificial photosynthesis. Energy Environ. Sci. 10, 1320–1338 (2017). https://doi.org/10.1039/C7EE00294G
Burton, N.A., Padilla, R.V., Rose, A., et al.: Increasing the efficiency of hydrogen production from solar powered water electrolysis. Renew. Sustain. Energy Rev. 135, 110255 (2021). https://doi.org/10.1016/j.rser.2020.110255
Masel, R.I., Liu, Z.C., Yang, H.Z., et al.: An industrial perspective on catalysts for low-temperature CO2 electrolysis. Nat. Nanotechnol. 16, 118–128 (2021). https://doi.org/10.1038/s41565-020-00823-x
ZatoÅ, M., Rozière, J., Jones, D.J.: Current understanding of chemical degradation mechanisms of perfluorosulfonic acid membranes and their mitigation strategies: a review. Sustain. Energy Fuels 1, 409–438 (2017). https://doi.org/10.1039/C7SE00038C
Papakonstantinou, G., Algara-Siller, G., Teschner, D., et al.: Degradation study of a proton exchange membrane water electrolyzer under dynamic operation conditions. Appl. Energy 280, 115911 (2020). https://doi.org/10.1016/j.apenergy.2020.115911
Inaba, M., Kinumoto, T., Kiriake, M., et al.: Gas crossover and membrane degradation in polymer electrolyte fuel cells. Electrochim. Acta 51, 5746–5753 (2006). https://doi.org/10.1016/j.electacta.2006.03.008
Grigoriev, S.A., Dzhus, K.A., Bessarabov, D.G., et al.: Failure of PEM water electrolysis cells: case study involving anode dissolution and membrane thinning. Int. J. Hydrog. Energy 39, 20440–20446 (2014). https://doi.org/10.1016/j.ijhydene.2014.05.043
Maurya, S., Shin, S.H., Kim, Y., et al.: A review on recent developments of anion exchange membranes for fuel cells and redox flow batteries. RSC Adv. 5, 37206–37230 (2015). https://doi.org/10.1039/C5RA04741B
Laconti, A., Liu, H., Mittelsteadt, C., et al.: Polymer electrolyte membrane degradation mechanisms in fuel cells: findings over the past 30 years and comparison with electrolyzers. ECS Trans. 1, 199–219 (2006). https://doi.org/10.1149/1.2214554
Yamazaki, K.: High proton conductive and low gas permeable sulfonated graft copolyimide membrane. Macromolecules 43, 7185–7191 (2010)
Adamski, M., Skalski, T.J.G., Britton, B., et al.: Highly stable, low gas crossover, proton-conducting phenylated polyphenylenes. Angew. Chem. Int. Ed. 56, 9058–9061 (2017). https://doi.org/10.1002/anie.201703916
Adamski, M., Peressin, N., Holdcroft, S.: On the evolution of sulfonated polyphenylenes as proton exchange membranes for fuel cells. Mater. Adv. 2, 4966–5005 (2021). https://doi.org/10.1039/d1ma00511a
Klose, C., Saatkamp, T., Münchinger, A., et al.: All-hydrocarbon MEA for PEM water electrolysis combining low hydrogen crossover and high efficiency. Adv. Energy Mater. 10, 1903995 (2020). https://doi.org/10.1002/aenm.201903995
Besha, A.T., Tsehaye, M.T., Aili, D., et al.: Design of monovalent ion selective membranes for reducing the impacts of multivalent ions in reverse electrodialysis. Membranes 10, 7 (2019). https://doi.org/10.3390/membranes10010007
Safronova, E.Y., Golubenko, D.V., Shevlyakova, N.V., et al.: New cation-exchange membranes based on cross-linked sulfonated polystyrene and polyethylene for power generation systems. J. Membr. Sci. 515, 196–203 (2016). https://doi.org/10.1016/j.memsci.2016.05.006
Kienitz, B., Kolde, J., Priester, S., et al.: Ultra-thin reinforced ionomer membranes to meet next generation fuel cell targets. ECS Trans. 41, 1521–1530 (2011). https://doi.org/10.1149/1.3635683
Li, D.G., Motz, A.R., Bae, C., et al.: Durability of anion exchange membrane water electrolyzers. Energy Environ. Sci. 14, 3393–3419 (2021). https://doi.org/10.1039/d0ee04086j
Wang, Y.X., Niu, C.L., Zhu, Y.C., et al.: Tunable syngas formation from electrochemical CO2 reduction on copper nanowire arrays. ACS Appl. Energy Mater. 3, 9841–9847 (2020). https://doi.org/10.1021/acsaem.0c01504
He, M., Li, C.S., Zhang, H.C., et al.: Oxygen induced promotion of electrochemical reduction of CO2 via co-electrolysis. Nat. Commun. 11, 3844 (2020). https://doi.org/10.1038/s41467-020-17690-8
Liu, X.Y., Schlexer, P., Xiao, J.P., et al.: pH effects on the electrochemical reduction of CO2 towards C2 products on stepped copper. Nat. Commun. 10, 32 (2019). https://doi.org/10.1038/s41467-018-07970-9
Chen, Z.P., Zhang, X.X., Liu, W., et al.: Amination strategy to boost the CO2 electroreduction current density of M-N/C single-atom catalysts to the industrial application level. Energy Environ. Sci. 14, 2349–2356 (2021). https://doi.org/10.1039/D0EE04052E
O’Brien, C.P., MiaoLiu, rkS.J., et al.: Single pass CO2 conversion exceeding 85% in the electrosynthesis of multicarbon products via local CO2 regeneration. ACS Energy Lett. 6, 2952–2959 (2021). https://doi.org/10.1021/acsenergylett.1c01122
Niu, Z.Z., Chi, L.P., Liu, R., et al.: Rigorous assessment of CO2 electroreduction products in a flow cell. Energy Environ. Sci. 14, 4169–4176 (2021). https://doi.org/10.1039/D1EE01664D
Ma, M., Clark, E.L., Therkildsen, K.T., et al.: Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. Energy Environ. Sci. 13, 977–985 (2020). https://doi.org/10.1039/D0EE00047G
Ma, M., Kim, S., Chorkendorff, I., et al.: Role of ion-selective membranes in the carbon balance for CO2 electroreduction via gas diffusion electrode reactor designs. Chem. Sci. 11, 8854–8861 (2020). https://doi.org/10.1039/d0sc03047c
Mardle, P., Cassegrain, S., Habibzadeh, F., et al.: Carbonate ion crossover in zero-gap, KOH anolyte CO2 electrolysis. J. Phys. Chem. C 125, 25446–25454 (2021). https://doi.org/10.1021/acs.jpcc.1c08430
Lee, W.H., Ko, Y.J., Choi, Y., et al.: Highly selective and scalable CO2 to CO: electrolysis using coral-nanostructured Ag catalysts in zero-gap configuration. Nano Energy 76, 105030 (2020). https://doi.org/10.1016/j.nanoen.2020.105030
Wei, P.F., Li, H.F., Lin, L., et al.: CO2 electrolysis at industrial current densities using anion exchange membrane based electrolyzers. Sci. China Chem. 63, 1711–1715 (2020)
Wheeler, D.G., Mowbray, B.A.W., Reyes, A., et al.: Quantification of water transport in a CO2 electrolyzer. Energy Environ. Sci. 13, 5126–5134 (2020). https://doi.org/10.1039/D0EE02219E
Leonard, M.E., Clarke, L.E., Forner-Cuenca, A., et al.: Investigating electrode flooding in a flowing electrolyte, gas-fed carbon dioxide electrolyzer. Chemsuschem 13, 400–411 (2020). https://doi.org/10.1002/cssc.201902547
Aeshala, L.M., Verma, A.: Amines as reaction environment regulator for CO2 electrochemical reduction to CH4. Macromol. Symp. 357, 79–85 (2015). https://doi.org/10.1002/masy.201400193
Aeshala, L.M., Uppaluri, R., Verma, A.: Electrochemical conversion of CO2 to fuels: tuning of the reaction zone using suitable functional groups in a solid polymer electrolyte. Phys. Chem. Chem. Phys. 16, 17588–17594 (2014). https://doi.org/10.1039/C4CP02389G
Mao, M.J., Zhang, M.D., Meng, D.L., et al.: Imidazolium-functionalized cationic covalent triazine frameworks stabilized copper nanoparticles for enhanced CO2 electroreduction. ChemCatChem 12, 3530–3536 (2020). https://doi.org/10.1002/cctc.202000387
Li, X.Q., Duan, G.Y., Chen, J.W., et al.: Regulating electrochemical CO2RR selectivity at industrial current densities by structuring copper@poly(ionic liquid) interface. Appl. Catal. B Environ. 297, 120471 (2021). https://doi.org/10.1016/j.apcatb.2021.120471
Ratschmeier, B., Braunschweig, B.: Cations of ionic liquid electrolytes can act as a promoter for CO2 electrocatalysis through reactive intermediates and electrostatic stabilization. J. Phys. Chem. C 125, 16498–16507 (2021). https://doi.org/10.1021/acs.jpcc.1c02898
Rosen, B.A., Salehi-Khojin, A., Thorson, M.R., et al.: Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334, 643–644 (2011). https://doi.org/10.1126/science.1209786
Kemna, A., García Rey, N., Braunschweig, B.: Mechanistic insights on CO2 reduction reactions at platinum/[BMIM][BF4] interfaces from in operando spectroscopy. ACS Catal. 9, 6284–6292 (2019). https://doi.org/10.1021/acscatal.9b01033
Tanner, E.E.L., Batchelor-McAuley, C., Compton, R.G.: Carbon dioxide reduction in room-temperature ionic liquids: the effect of the choice of electrode material, cation, and anion. J. Phys. Chem. C 120, 26442–26447 (2016). https://doi.org/10.1021/acs.jpcc.6b10564
Sajjad, S.D., Gao, Y., Liu, Z.C., et al.: Tunable-high performance sustainion™ anion exchange membranes for electrochemical applications. ECS Trans. 77, 1653–1656 (2017). https://doi.org/10.1149/07711.1653ecst
Yin, Z.L., Peng, H.Q., Wei, X., et al.: An alkaline polymer electrolyte CO2 electrolyzer operated with pure water. Energy Environ. Sci. 12, 2455–2462 (2019). https://doi.org/10.1039/C9EE01204D
Giffin, G.A., Lavina, S., Pace, G., et al.: Interplay between the structure and relaxations in Selemion AMV hydroxide conducting membranes for AEMFC applications. J. Phys. Chem. C 116, 23965–23973 (2012). https://doi.org/10.1021/jp3094879
Carter, B.M., Dobyns, B.M., Beckingham, B.S., et al.: Multicomponent transport of alcohols in an anion exchange membrane measured by in-situ ATR FTIR spectroscopy. Polymer 123, 144–152 (2017). https://doi.org/10.1016/j.polymer.2017.06.070
Krödel, M., Carter, B.M., Rall, D., et al.: Rational design of ion exchange membrane material properties limits the crossover of CO2 reduction products in artificial photosynthesis devices. ACS Appl. Mater. Interfaces 12, 12030–12042 (2020). https://doi.org/10.1021/acsami.9b21415
Carmo, M., Doubek, G., Sekol, R.C., et al.: Development and electrochemical studies of membrane electrode assemblies for polymer electrolyte alkaline fuel cells using FAA membrane and ionomer. J. Power Sources 230, 169–175 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.015
Ziv, N., Mondal, A.N., Weissbach, T., et al.: Effect of CO2 on the properties of anion exchange membranes for fuel cell applications. J. Membr. Sci. 586, 140–150 (2019). https://doi.org/10.1016/j.memsci.2019.05.053
Torbensen, K., Joulié, D., Ren, S.X., et al.: Molecular catalysts boost the rate of electrolytic CO2 reduction. ACS Energy Lett. 5, 1512–1518 (2020). https://doi.org/10.1021/acsenergylett.0c00536
Larrazábal, G.O., Strøm-Hansen, P., Heli, J.P., et al.: Analysis of mass flows and membrane cross-over in CO2 reduction at high current densities in an MEA-type electrolyzer. ACS Appl. Mater. Interfaces 11, 41281–41288 (2019). https://doi.org/10.1021/acsami.9b13081
Lees, E.W., Mowbray, B.A.W., Salvatore, D.A., et al.: Linking gas diffusion electrode composition to CO2 reduction in a flow cell. J. Mater. Chem. A 8, 19493–19501 (2020). https://doi.org/10.1039/D0TA03570J
Liu, Z.C., Yang, H.Z., Kutz, R., et al.: CO2 electrolysis to CO and O2 at high selectivity, stability and efficiency using Sustainion membranes. J. Electrochem. Soc. 165, J3371–J3377 (2018). https://doi.org/10.1149/2.0501815jes
Durst, J., Siebel, A., Simon, C., et al.: New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 7, 2255–2260 (2014). https://doi.org/10.1039/C4EE00440J
Feaster, J.T., Shi, C., Cave, E.R., et al.: Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 7, 4822–4827 (2017). https://doi.org/10.1021/acscatal.7b00687
Nørskov, J.K., Bligaard, T., Rossmeisl, J., et al.: Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009). https://doi.org/10.1038/nchem.121
Strmcnik, D., Uchimura, M., Wang, C., et al.: Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5, 300–306 (2013). https://doi.org/10.1038/nchem.1574
Cheng, T., Wang, L., Merinov, B.V., et al.: Explanation of dramatic pH-dependence of hydrogen binding on noble metal electrode: greatly weakened water adsorption at high pH. J. Am. Chem. Soc. 140, 7787–7790 (2018). https://doi.org/10.1021/jacs.8b04006
Hori, Y., Takahashi, R., Yoshinami, Y., et al.: Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101, 7075–7081 (1997). https://doi.org/10.1021/jp970284i
Kim, C., Bui, J.C., Luo, X.Y., et al.: Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bilayer ionomer coatings. Nat. Energy 6, 1026–1034 (2021). https://doi.org/10.1038/s41560-021-00920-8
Unlu, M., Zhou, J.F., Kohl, P.A.: Anion exchange membrane fuel cells: experimental comparison of hydroxide and carbonate conductive ions. Electrochem. Solid State Lett. 12, B27 (2009). https://doi.org/10.1149/1.3058999
Pătru, A., Binninger, T., Pribyl, B., et al.: Design principles of bipolar electrochemical co-electrolysis cells for efficient reduction of carbon dioxide from gas phase at low temperature. J. Electrochem. Soc. 166, F34–F43 (2019). https://doi.org/10.1149/2.1221816jes
Rabinowitz, J.A., Kanan, M.W.: The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat. Commun. 11, 5231 (2020). https://doi.org/10.1038/s41467-020-19135-8
Keith, D.W., Holmes, G., St Angelo, D., et al.: A process for capturing CO2 from the atmosphere. Joule 2, 1573–1594 (2018). https://doi.org/10.1016/j.joule.2018.05.006
Sisler, J., Khan, S., Ip, A.H., et al.: Ethylene electrosynthesis: a comparative techno-economic analysis of alkaline vs membrane electrode assembly vs CO2–CO–C2H4 tandems. ACS Energy Lett. 6, 997–1002 (2021). https://doi.org/10.1021/acsenergylett.0c02633
Bohra, D., Chaudhry, J.H., Burdyny, T., et al.: Modeling the electrical double layer to understand the reaction environment in a CO2 electrocatalytic system. Energy Environ. Sci. 12, 3380–3389 (2019). https://doi.org/10.1039/C9EE02485A
Ziv, N., Mustain, W.E., Dekel, D.R.: The effect of ambient carbon dioxide on anion-exchange membrane fuel cells. Chemsuschem 11, 1136–1150 (2018). https://doi.org/10.1002/cssc.201702330
Ziv, N., Dekel, D.R.: A practical method for measuring the true hydroxide conductivity of anion exchange membranes. Electrochem. Commun. 88, 109–113 (2018). https://doi.org/10.1016/j.elecom.2018.01.021
Cao, X.Z., Novitski, D., Holdcroft, S.: Visualization of hydroxide ion formation upon electrolytic water splitting in an anion exchange membrane. ACS Mater. Lett. 1, 362–366 (2019). https://doi.org/10.1021/acsmaterialslett.9b00195
Díaz-Sainz, G., Alvarez-Guerra, M., Solla-Gullón, J., et al.: Catalyst coated membrane electrodes for the gas phase CO2 electroreduction to formate. Catal. Today 346, 58–64 (2020). https://doi.org/10.1016/j.cattod.2018.11.073
Ashdot, A., Kattan, M., Kitayev, A., et al.: Design strategies for alkaline exchange membrane-electrode assemblies: optimization for fuel cells and electrolyzers. Membranes 11, 686 (2021). https://doi.org/10.3390/membranes11090686
Díaz-Sainz, G., Alvarez-Guerra, M., Irabien, A.: Continuous electrochemical reduction of CO2 to formate: comparative study of the influence of the electrode configuration with Sn and Bi-based electrocatalysts. Molecules 25, 4457 (2020). https://doi.org/10.3390/molecules25194457
Li, Y.C., Yan, Z.F., Hitt, J., et al.: Bipolar membranes inhibit product crossover in CO2 electrolysis cells. Adv. Sustain. Syst. 2, 1700187 (2018). https://doi.org/10.1002/adsu.201700187
Lim, J., Kang, P.W., Jeon, S.S., et al.: Electrochemically deposited Sn catalysts with dense tips on a gas diffusion electrode for electrochemical CO2 reduction. J. Mater. Chem. A 8, 9032–9038 (2020). https://doi.org/10.1039/D0TA00569J
Yang, H.Z., Kaczur, J.J., Sajjad, S.D., et al.: CO2 conversion to formic acid in a three compartment cell with Sustainion™ membranes. ECS Trans. 77, 1425–1431 (2017). https://doi.org/10.1149/07711.1425ecst
Papakonstantinou, P., Deimede, V.: Self-cross-linked quaternary phosphonium based anion exchange membranes: assessing the influence of quaternary phosphonium groups on alkaline stability. RSC Adv. 6, 114329–114343 (2016). https://doi.org/10.1039/C6RA24102F
Thomas, O.D., Soo, K.J.W.Y., Peckham, T.J., et al.: A stable hydroxide-conducting polymer. J. Am. Chem. Soc. 134, 10753–10756 (2012). https://doi.org/10.1021/ja303067t
Wright, A.G., Holdcroft, S.: Hydroxide-stable ionenes. ACS Macro Lett. 3, 444–447 (2014). https://doi.org/10.1021/mz500168d
Long, H., Pivovar, B.: Hydroxide degradation pathways for imidazolium cations: a DFT study. J. Phys. Chem. C 118, 9880–9888 (2014). https://doi.org/10.1021/jp501362y
Hugar, K.M., KostalikCoates, H.A.G.W.: Imidazolium cations with exceptional alkaline stability: a systematic study of structure-stability relationships. J. Am. Chem. Soc. 137, 8730–8737 (2015). https://doi.org/10.1021/jacs.5b02879
Fan, J.T., Wright, A.G., Britton, B., et al.: Cationic polyelectrolytes, stable in 10 M KOHaq at 100 °C. ACS Macro Lett. 6, 1089–1093 (2017). https://doi.org/10.1021/acsmacrolett.7b00679
Fan, J.T., Willdorf-Cohen, S., Schibli, E.M., et al.: Poly(bis-arylimidazoliums) possessing high hydroxide ion exchange capacity and high alkaline stability. Nat. Commun. 10, 2306 (2019). https://doi.org/10.1038/s41467-019-10292-z
Mustain, W.E., Chatenet, M., Page, M., et al.: Durability challenges of anion exchange membrane fuel cells. Energy Environ. Sci. 13, 2805–2838 (2020). https://doi.org/10.1039/D0EE01133A
Müller, J., Zhegur, A., Krewer, U., et al.: Practical ex-situ technique to measure the chemical stability of anion-exchange membranes under conditions simulating the fuel cell environment. ACS Mater. Lett. 2, 168–173 (2020). https://doi.org/10.1021/acsmaterialslett.9b00418
Yang, K.L., Kas, R., Smith, W.A., et al.: Role of the carbon-based gas diffusion layer on flooding in a gas diffusion electrode cell for electrochemical CO2 reduction. ACS Energy Lett. 6, 33–40 (2021). https://doi.org/10.1021/acsenergylett.0c02184
Münchinger, A., Kreuer, K.D.: Selective ion transport through hydrated cation and anion exchange membranes. I. The effect of specific interactions. J. Membr. Sci. 592, 117372 (2019)
Geise, G.M., Hickner, M.A., Logan, B.E.: Ionic resistance and permselectivity tradeoffs in anion exchange membranes. ACS Appl. Mater. Interfaces 5, 10294–10301 (2013). https://doi.org/10.1021/am403207w
Xu, Y., Edwards, J.P., Liu, S.J., et al.: Self-cleaning CO2 reduction systems: unsteady electrochemical forcing enables stability. ACS Energy Lett. 6, 809–815 (2021). https://doi.org/10.1021/acsenergylett.0c02401
Varcoe, J.R., Slade, R.C.T.: Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5, 187–200 (2005). https://doi.org/10.1002/fuce.200400045
Overton, P., Li, W., Cao, X.Z., et al.: Tuning ion exchange capacity in hydroxide-stable poly(arylimidazolium) ionenes: increasing the ionic content decreases the dependence of conductivity and hydration on temperature and humidity. Macromolecules 53, 10548–10560 (2020). https://doi.org/10.1021/acs.macromol.0c02014
Ozden, A., Wang, Y.H., Li, F.W., et al.: Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. Joule 5, 706–719 (2021). https://doi.org/10.1016/j.joule.2021.01.007
Mayerhöfer, B., McLaughlin, D., Böhm, T., et al.: Bipolar membrane electrode assemblies for water electrolysis. ACS Appl. Energy Mater. 3, 9635–9644 (2020). https://doi.org/10.1021/acsaem.0c01127
Peugeot, A., Creissen, C.E., Schreiber, M.W., et al.: Advancing the anode compartment for energy efficient CO2 reduction at neutral pH. ChemElectroChem 8, 2726–2736 (2021). https://doi.org/10.1002/celc.202100742
De Mot, B., Hereijgers, J., Daems, N., et al.: Insight in the behavior of bipolar membrane equipped carbon dioxide electrolyzers at low electrolyte flowrates. Chem. Eng. J. 428, 131170 (2022). https://doi.org/10.1016/j.cej.2021.131170
Yan, Z.F., Hitt, J.L., Zeng, Z.C., et al.: Improving the efficiency of CO2 electrolysis by using a bipolar membrane with a weak-acid cation exchange layer. Nat. Chem. 13, 33–40 (2021). https://doi.org/10.1038/s41557-020-00602-0
Luo, J.S., Vermaas, D.A., Bi, D.Q., et al.: Bipolar membrane-assisted solar water splitting in optimal pH. Adv. Energy Mater. 6, 1600100 (2016). https://doi.org/10.1002/aenm.201600100
Huang, C.H., Xu, T.W.: Electrodialysis with bipolar membranes for sustainable development. Environ. Sci. Technol. 40, 5233–5243 (2006). https://doi.org/10.1021/es060039p
Chen, Y.Y., Vise, A., Klein, W.E., et al.: A robust, scalable platform for the electrochemical conversion of CO2 to formate: identifying pathways to higher energy efficiencies. ACS Energy Lett. 5, 1825–1833 (2020). https://doi.org/10.1021/acsenergylett.0c00860
Peng, S.K., Xu, X., Lu, S.F., et al.: A self-humidifying acidic–alkaline bipolar membrane fuel cell. J. Power Sources 299, 273–279 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.104
Chen, Y.Y., Wrubel, J.A., Klein, W.E., et al.: High-performance bipolar membrane development for improved water dissociation. ACS Appl. Polym. Mater. 2, 4559–4569 (2020). https://doi.org/10.1021/acsapm.0c00653
Balster, J., Srinkantharajah, S., Sumbharaju, R., et al.: Tailoring the interface layer of the bipolar membrane. J. Membr. Sci. 365, 389–398 (2010). https://doi.org/10.1016/j.memsci.2010.09.034
Ge, Z.J., Shehzad, M.A., Yang, X.Q., et al.: High-performance bipolar membrane for electrochemical water electrolysis. J. Membr. Sci. 656, 120660 (2022). https://doi.org/10.1016/j.memsci.2022.120660
McDonald, M.B., Freund, M.S.: Graphene oxide as a water dissociation catalyst in the bipolar membrane interfacial layer. ACS Appl. Mater. Interfaces 6, 13790–13797 (2014). https://doi.org/10.1021/am503242v
Strathmann, H., Krol, J.J., Rapp, H.J., et al.: Limiting current density and water dissociation in bipolar membranes. J. Membr. Sci. 125, 123–142 (1997). https://doi.org/10.1016/S0376-7388(96)00185-8
Vermaas, D.A., Wiegman, S., Nagaki, T., et al.: Ion transport mechanisms in bipolar membranes for (photo)electrochemical water splitting. Sustain. Energy Fuels 2, 2006–2015 (2018). https://doi.org/10.1039/C8SE00118A
Donnan, F.G.: The theory of membrane equilibria. Chem. Rev. 1, 73–90 (1924). https://doi.org/10.1021/cr60001a003
Tufa, R.A., Blommaert, M.A., Chanda, D., et al.: Bipolar membrane and interface materials for electrochemical energy systems. ACS Appl. Energy Mater. 4, 7419–7439 (2021). https://doi.org/10.1021/acsaem.1c01140
Vermaas, D.A., Sassenburg, M., Smith, W.A.: Photo-assisted water splitting with bipolar membrane induced pH gradients for practical solar fuel devices. J. Mater. Chem. A 3, 19556–19562 (2015). https://doi.org/10.1039/C5TA06315A
Sun, K., Liu, R., Chen, Y.K., et al.: A stabilized, intrinsically safe, 10% efficient, solar-driven water-splitting cell incorporating earth-abundant electrocatalysts with steady-state pH gradients and product separation enabled by a bipolar membrane. Adv. Energy Mater. 6, 1600379 (2016). https://doi.org/10.1002/aenm.201600379
Hohenadel, A., Gangrade, A.S., Holdcroft, S.: Spectroelectrochemical detection of water dissociation in bipolar membranes. ACS Appl. Mater. Interfaces 13, 46125–46133 (2021). https://doi.org/10.1021/acsami.1c12544
Shen, C.H., Wycisk, R., Pintauro, P.N.: High performance electrospun bipolar membrane with a 3D junction. Energy Environ. Sci. 10, 1435–1442 (2017). https://doi.org/10.1039/C7EE00345E
Mel’nikov, S.S., Shapovalova, O.V., Shel’deshov, N.V., et al.: Effect of d-metal hydroxides on water dissociation in bipolar membranes. Petroleum Chem. 51, 577–584 (2011)
Oda, Y., Yawataya, T.: Neutrality-disturbance phenomenon of membrane-solution systems. Desalination 5, 129–138 (1968). https://doi.org/10.1016/S0011-9164(00)80208-8
Rajesh, A.M., Chakrabarty, T., Prakash, S., et al.: Effects of metal alkoxides on electro-assisted water dissociation across bipolar membranes. Electrochim. Acta 66, 325–331 (2012). https://doi.org/10.1016/j.electacta.2012.01.102
Li, T.F., Lees, E.W., Goldman, M., et al.: Electrolytic conversion of bicarbonate into CO in a flow cell. Joule 3, 1487–1497 (2019). https://doi.org/10.1016/j.joule.2019.05.021
Mandal, M.: Highly efficient bipolar membrane CO2 electrolysis. ChemElectroChem 8, 1448–1450 (2021). https://doi.org/10.1002/celc.202100243
Pribyl-Kranewitter, B., Beard, A., Schuler, T., et al.: Investigation and optimisation of operating conditions for low-temperature CO2 reduction to CO in a forward-bias bipolar-membrane electrolyser. J. Electrochem. Soc. 168, 043506 (2021). https://doi.org/10.1149/1945-7111/abf063
Panha, K., Fowler, M., Yuan, X.Z., et al.: Accelerated durability testing via reactants relative humidity cycling on PEM fuel cells. Appl. Energy 93, 90–97 (2012). https://doi.org/10.1016/j.apenergy.2011.05.011
Giesbrecht, P.K., Freund, M.S.: Recent advances in bipolar membrane design and applications. Chem. Mater. 32, 8060–8090 (2020). https://doi.org/10.1021/acs.chemmater.0c02829
Muroyama, A.P., Pătru, A., Gubler, L.: Review: CO2 separation and transport via electrochemical methods. J. Electrochem. Soc. 167, 133504 (2020). https://doi.org/10.1149/1945-7111/abbbb9
Oener, S.Z., Twight, L.P., Lindquist, G.A., et al.: Thin cation-exchange layers enable high-current-density bipolar membrane electrolyzers via improved water transport. ACS Energy Lett. 6, 1–8 (2021). https://doi.org/10.1021/acsenergylett.0c02078
Dege, G.J. Chlanda, F.P. Lee, L.T.C., et al.: Method of making novel two component bipolar ion exchange membranes. US Patent 4,253,900, 3 Mar 1981
Pan, J.F., Hou, L.X., Wang, Q.Y., et al.: Preparation of bipolar membranes by electrospinning. Mater. Chem. Phys. 186, 484–491 (2017). https://doi.org/10.1016/j.matchemphys.2016.11.023
Powers, D., Mondal, A.N., Yang, Z.Z., et al.: Freestanding bipolar membranes with an electrospun junction for high current density water splitting. ACS Appl. Mater. Interfaces 14, 36092–36104 (2022). https://doi.org/10.1021/acsami.2c07680
Blommaert, M.A., Aili, D., Tufa, R.A., et al.: Insights and challenges for applying bipolar membranes in advanced electrochemical energy systems. ACS Energy Lett. 6, 2539–2548 (2021). https://doi.org/10.1021/acsenergylett.1c00618
Garza, A.J., Bell, A.T., Head-Gordon, M.: Mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal. 8, 1490–1499 (2018). https://doi.org/10.1021/acscatal.7b03477
Ozden, A., Liu, Y.J., Dinh, C.T., et al.: Gold adparticles on silver combine low overpotential and high selectivity in electrochemical CO2 conversion. ACS Appl. Energy Mater. 4, 7504–7512 (2021). https://doi.org/10.1021/acsaem.1c01577
Chen, B.T., Li, B.R., Tian, Z.Q., et al.: Enhancement of mass transfer for facilitating industrial-level CO2 electroreduction on atomic Ni–N4 sites. Adv. Energy Mater. 11, 2102152 (2021). https://doi.org/10.1002/aenm.202102152
Wang, Q.Y., Liu, K., Fu, J.W., et al.: Atomically dispersed s-block magnesium sites for electroreduction of CO2 to CO. Angew. Chem. Int. Ed. 60, 25241–25245 (2021). https://doi.org/10.1002/anie.202109329
Chae, S.Y., Lee, S.Y., Joo, O.S.: Directly synthesized silver nanoparticles on gas diffusion layers by electrospray pyrolysis for electrochemical CO2 reduction. Electrochim. Acta 303, 118–124 (2019). https://doi.org/10.1016/j.electacta.2019.02.046
Dinh, C.T., García de Arquer, F.P., Sinton, D., et al.: High rate, selective, and stable electroreduction of CO2 to CO in basic and neutral media. ACS Energy Lett. 3, 2835–2840 (2018). https://doi.org/10.1021/acsenergylett.8b01734
Qi, Z., Biener, M.M., Kashi, A.R., et al.: Electrochemical CO2 to CO reduction at high current densities using a nanoporous gold catalyst. Mater. Res. Lett. 9, 99–104 (2021). https://doi.org/10.1080/21663831.2020.1842534
Wei, S.T., Zou, H.Y., Rong, W.F., et al.: Conjugated nickel phthalocyanine polymer selectively catalyzes CO2-to-CO conversion in a wide operating potential window. Appl. Catal. B Environ. 284, 119739 (2021). https://doi.org/10.1016/j.apcatb.2020.119739
Salvatore, D.A., Weekes, D.M., He, J.F., et al.: Electrolysis of gaseous CO2 to CO in a flow cell with a bipolar membrane. ACS Energy Lett. 3, 149–154 (2018). https://doi.org/10.1021/acsenergylett.7b01017
Yang, K.L., Li, M.R., Subramanian, S., et al.: Cation-driven increases of CO2 utilization in a bipolar membrane electrode assembly for CO2 electrolysis. ACS Energy Lett. 6, 4291–4298 (2021). https://doi.org/10.1021/acsenergylett.1c02058
Li, Y.C., Lee, G., Yuan, T.G., et al.: CO2 electroreduction from carbonate electrolyte. ACS Energy Lett. 4, 1427–1431 (2019). https://doi.org/10.1021/acsenergylett.9b00975
Blommaert, M.A., Sharifian, R., Shah, N.U., et al.: Orientation of a bipolar membrane determines the dominant ion and carbonic species transport in membrane electrode assemblies for CO2 reduction. J. Mater. Chem. A Mater. 9, 11179–11186 (2021). https://doi.org/10.1039/d0ta12398f
Fan, T.T., Ma, W.C., Xie, M.C., et al.: Achieving high current density for electrocatalytic reduction of CO2 to formate on bismuth-based catalysts. Cell Rep. Phys. Sci. 2, 100353 (2021). https://doi.org/10.1016/j.xcrp.2021.100353
Grigioni, I., Sagar, L.K., Li, Y.C., et al.: CO2 electroreduction to formate at a partial current density of 930 mA cm–2 with InP colloidal quantum dot derived catalysts. ACS Energy Lett. 6, 79–84 (2021). https://doi.org/10.1021/acsenergylett.0c02165
Li, J., Jiao, J.Q., Zhang, H.C., et al.: Two-dimensional SnO2 nanosheets for efficient carbon dioxide electroreduction to formate. ACS Sustainable Chem. Eng. 8, 4975–4982 (2020). https://doi.org/10.1021/acssuschemeng.0c01070
Fan, L., Xia, C., Zhu, P., et al.: Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat. Commun. 11, 3633 (2020). https://doi.org/10.1038/s41467-020-17403-1
Yang, J., Wang, X.L., Qu, Y.T., et al.: Bi-based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction. Adv. Energy Mater. 10, 2001709 (2020). https://doi.org/10.1002/aenm.202001709
Gong, Q.F., Ding, P., Xu, M.Q., et al.: Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 10, 2807 (2019). https://doi.org/10.1038/s41467-019-10819-4
Liu, H., Su, Y.Q., Kuang, S.Y., et al.: Highly efficient CO2 electrolysis within a wide operation window using octahedral tin oxide single crystals. J. Mater. Chem. A 9, 7848–7856 (2021). https://doi.org/10.1039/D1TA00285F
Zhao, Y., Liu, X.L., Liu, Z.X., et al.: Spontaneously Sn-doped Bi/BiOx core–shell nanowires toward high-performance CO2 electroreduction to liquid fuel. Nano Lett. 21, 6907–6913 (2021). https://doi.org/10.1021/acs.nanolett.1c02053
Díaz-Sainz, G., Alvarez-Guerra, M., Irabien, A.: Continuous electroreduction of CO2 towards formate in gas-phase operation at high current densities with an anion exchange membrane. J. CO2 Util. 56, 1018 (2022)
Bienen, F.B., Kopljar, D., Löwe, A., et al.: Utilizing formate as an energy carrier by coupling CO2 electrolysis with fuel cell devices. Chemie Ingenieur Tech. 91, 872–882 (2019). https://doi.org/10.1002/cite.201800212
Xing, Z., Hu, X., Feng, X.F.: Tuning the microenvironment in gas-diffusion electrodes enables high-rate CO2 electrolysis to formate. ACS Energy Lett. 6, 1694–1702 (2021). https://doi.org/10.1021/acsenergylett.1c00612
He, S.S., Ni, F.L., Ji, Y.J., et al.: The p-orbital delocalization of main-group metals to boost CO2 electroreduction. Angew. Chem. Int. Ed. 57, 16114–16119 (2018). https://doi.org/10.1002/anie.201810538
Sen, S., Skinn, B., Hall, T., et al.: Pulsed electrodeposition of tin electrocatalysts onto gas diffusion layers for carbon dioxide reduction to formate. MRS Adv. 2, 451–458 (2017). https://doi.org/10.1557/adv.2016.652
Díaz-Sainz, G., Alvarez-Guerra, M., Solla-Gullón, J., et al.: CO2 electroreduction to formate: continuous single-pass operation in a filter-press reactor at high current densities using Bi gas diffusion electrodes. J. CO2 Util. 34, 12–19 (2019). https://doi.org/10.1016/j.jcou.2019.05.035
Wang, Z.T., Qi, R.J., Liu, D.Y., et al.: Exfoliated ultrathin ZnIn2S4 nanosheets with abundant zinc vacancies for enhanced CO2 electroreduction to formate. Chemsuschem 14, 852–859 (2021). https://doi.org/10.1002/cssc.202002785
Deng, P.L., Yang, F., Wang, Z.T., et al.: Metal-organic framework-derived carbon nanorods encapsulating bismuth oxides for rapid and selective CO2 electroreduction to formate. Angew. Chem. Int. Ed. 59, 10807–10813 (2020). https://doi.org/10.1002/anie.202000657
Xia, C., Zhu, P., Jiang, Q., et al.: Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019). https://doi.org/10.1038/s41560-019-0451-x
Díaz-Sainz, G., Alvarez-Guerra, M., Solla-Gullón, J., et al.: Gas–liquid–solid reaction system for CO2 electroreduction to formate without using supporting electrolyte. Aiche J. 66, e16299 (2020). https://doi.org/10.1002/aic.16299
Del Castillo, A., Alvarez-Guerra, M., Solla-Gullón, J., et al.: Sn nanoparticles on gas diffusion electrodes: synthesis, characterization and use for continuous CO2 electroreduction to formate. J. CO2 Util. 18, 222–228 (2017). https://doi.org/10.1016/j.jcou.2017.01.021
Kopljar, D., Inan, A., Vindayer, P., et al.: Electrochemical reduction of CO2 to formate at high current density using gas diffusion electrodes. J. Appl. Electrochem. 44, 1107–1116 (2014)
Pavesi, D., van de Poll, R.C.J., Krasovic, J.L., et al.: Cathodic disintegration as an easily scalable method for the production of Sn- and Pb-based catalysts for CO2 reduction. ACS Sustain. Chem. Eng. 8, 15603–15610 (2020). https://doi.org/10.1021/acssuschemeng.0c04875
Fujinuma, N., Lofland, S.: Acid-compatible catalyst development and machine-learning-assisted cell optimization toward cost-effective CO2 reduction reaction: Co-P4VP-derived catalyst and Nafion-based membrane electrode assembly. Meet. Abstr. (2021). https://doi.org/10.1149/ma2021-02281848mtgabs
Cao, C.S., Ma, D.D., Gu, J.F., et al.: Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel. Angew. Chem. Int. Ed. 59, 15014–15020 (2020). https://doi.org/10.1002/anie.202005577
Wang, D., Liu, C.W., Zhang, Y.N., et al.: CO2 electroreduction to formate at a partial current density up to 590 mA mg−1 via micrometer-scale lateral structuring of bismuth nanosheets. Small 17, e2100602 (2021). https://doi.org/10.1002/smll.202100602
Lou, Y.Y., Fu, D., Fabre, B., et al.: Bismuth coated graphite felt modified by silver particles for selective electroreduction of CO2 into formate in a flow cell. Electrochimica Acta 371, 137821 (2021). https://doi.org/10.1016/j.electacta.2021.137821
Zhao, F.: Exploring electrochemical flow-cell designs and parameters for CO2 reduction to formate under industrially relevant conditions. J. Electrochem. Soc. 169, 054511 (2022). https://doi.org/10.1149/1945-7111/ac6bc1
Duan, G.Y., Li, X.Q., Ding, G.R., et al.: Highly efficient electrocatalytic CO2 reduction to C2+ products on a poly(ionic liquid)-based Cu0–CuI tandem catalyst. Angew. Chem. Int. Ed. 61, e202110657 (2022). https://doi.org/10.1002/anie.202110657
Lu, J.N., Liu, J., Zhang, L., et al.: Crystalline mixed-valence copper supramolecular isomers for electroreduction of CO2 to hydrocarbons. J. Mater. Chem. A 9, 23477–23484 (2021). https://doi.org/10.1039/D1TA07148C
Zhao, X., Du, L.J., You, B., et al.: Integrated design for electrocatalytic carbon dioxide reduction. Catal. Sci. Technol. 10, 2711–2720 (2020). https://doi.org/10.1039/D0CY00453G
Chen, X.Y., Chen, J.F., Alghoraibi, N.M., et al.: Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 4, 20–27 (2021). https://doi.org/10.1038/s41929-020-00547-0
Liu, W.Q., Wei, S.L., Bai, P.Y., et al.: Robust coal matrix intensifies electron/substrate interaction of nickel–nitrogen (Ni–N) active sites for efficient CO2 electroreduction at industrial current density. Appl. Catal. B Environ. 299, 120661 (2021). https://doi.org/10.1016/j.apcatb.2021.120661
Kutz, R.B., Chen, Q.M., Yang, H.Z., et al.: Sustainion imidazolium-functionalized polymers for carbon dioxide electrolysis. Energy Technol. 5, 929–936 (2017). https://doi.org/10.1002/ente.201600636