Automated detection of the preseizure state in EEG signal using neural networks
Tài liệu tham khảo
Parvez, 2014, EEG signal classification using frequency band analysis towards epileptic seizure prediction, 126
https://www.kaggle.com/c/seizure-prediction.
Ali, 2014, Seizure prediction methods: a review of the current predicting techniques, Biomed Pharmacol J, 7, 153, 10.13005/bpj/466
Nilufer, 2014, Patient specific seizure prediction system using Hilbert spectrum and Bayesian networks classifiers, Comput Math Methods Med
D’Alessandro, 2003, Epileptic seizure prediction using hybrid feature selection over multiple intracranial EEG electrode contacts: a report of four patients, IEEE Trans Biomed Eng, 50
Carney, 2011, Seizure prediction: methods, Epilepsy Behav, 22
Schelter, 2006, Do false predictions of seizures depend on the state of vigilance? A report from two seizure-prediction methods and proposed remedies, Epilepsia, 47, 2058, 10.1111/j.1528-1167.2006.00848.x
Alotaiby, 2014, EEG seizure detection and prediction algorithms: a survey, EURASIP J Adv Signal Process, 2014, 183, 10.1186/1687-6180-2014-183
Brinkmann, 2016, Crowd sourcing reproducible seizure forecasting in human and canine epilepsy, Brain, 139, 1713, 10.1093/brain/aww045
Howbert, 2014, Forecasting seizures in dogs with naturally occurring epilepsy, PLoS One, 9, e81920, 10.1371/journal.pone.0081920
Park, 2011, Seizure prediction with spectral power of EEG using cost-sensitive support vector machines, Epilepsia, 52, 1761, 10.1111/j.1528-1167.2011.03138.x
Jacobs, 2009, High frequency oscillations (80–500Hz) in the preictal period in patients with focal seizures, Epilepsia, 50, 1780, 10.1111/j.1528-1167.2009.02067.x
Feldwisch-Drentrup, 2010, Joining the benefits: combining epileptic seizure prediction methods, Epilepsia, 51, 1598, 10.1111/j.1528-1167.2009.02497.x
Kiral-Kornek, 2018, Epileptic seizure prediction using big data and deep learning: Toward a mobile system, EBioMedicine, 27, 103, 10.1016/j.ebiom.2017.11.032
Stacey, 2018
Ramgopal, 2014
Nagaraj, 2015, The future of seizure prediction and intervention: closing the loop, J Clin Neurophysiol, 32, 194, 10.1097/WNP.0000000000000139
Varatharajah, 2017, Seizure forecasting and the preictal state in canine epilepsy, Int J Neural Syst, 27, 1650046, 10.1142/S0129065716500465
Alotaiby, 2017, Epileptic seizure prediction using CSP and LDA for scalp EEG signals, Comput Intell Neurosci, 1, 10.1155/2017/1240323
Browne, 2000
Niedermeyer, 2004
Blanco, 2013, Comparison of frequency bands using spectral entropy for epileptic seizure prediction, ISRN Neurol, 10.1155/2013/287327
Akiyama, 2011, Focal resection of fast ripples on extraoperative intracranial EEG improves seizure outcome in pediatric epilepsy, Epilepsia, 1
Anusha, 2012, Classification of normal and epileptic EEG signal using time & frequency domain features through artificial neural network
Sun, 1997, Time-frequency analysis of high-frequency activity at the start of epileptic seizures
Franaszczuk, 1999, Time-frequency analysis of EEG signal complexity during epileptic seizures
Zavid Parvez, 2014, EEG signal classification using frequency band analysis towards epileptic seizure prediction
Mormann, 2007, Seizure prediction: the long and winding road, Brain, 130, 314, 10.1093/brain/awl241
Andrzejak, 2009, Seizure prediction: any better than chance?, Clin Neurophysiol, 120, 1465, 10.1016/j.clinph.2009.05.019
Mormann, 2016, Seizure prediction: making mileage on the long and winding road, Brain, 139, 1625, 10.1093/brain/aww091
Cook, 2013, Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study, Lancet Neurol, 12, 563, 10.1016/S1474-4422(13)70075-9
Jeffry, 2014, Forecasting seizures in dogs with naturally occurring epilepsy, PLoS One, 9, e81920, 10.1371/journal.pone.0081920
Fujita, 2014, Preictal activity of subicular, CA1, and dentate gyrus principal neurons in the dorsal hippocampus before spontaneous seizures in a rat model of temporal lobe epilepsy, J Neurosci, 34, 16671, 10.1523/JNEUROSCI.0584-14.2014
WolfgangLöscher, 2011, Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs, J Seizure, 20, 359
Sood, 2014, Sciences design and development of prediction model to detect seizure activity utilizing higher order statistical features of EEG signals, Res J Pharm Biol Chem, 5, 11
Nikias, 1993, Higher-order spectral analysis. Engineering in medicine and biology society
Mirowski, 2008, Classification of patterns of EEG synchronization for seizure prediction
Howbert, 2014, Forecasting seizures in dogs with naturally occurring epilepsy, PLoS One, 9, e81920, 10.1371/journal.pone.0081920
Park, 2011, Seizure prediction with spectral power of EEG using cost-sensitive support vector machines, Epilepsia, 52, 1761, 10.1111/j.1528-1167.2011.03138.x
Patterson, 2014, Canine epilepsy: an underutilized model, ILAR J, 55, 182, 10.1093/ilar/ilu021
Leppik, 2011, Canine status epilepticus: a translational platform for human therapeutic trials, Epilepsia, 52, 31, 10.1111/j.1528-1167.2011.03231.x
Tatum, 2014
Baumgartner, 1998, Preictal SPECT in temporal lobe epilepsy: regional cerebral blood flow is increased prior to electroencephalography-seizure onset, J Nucl Med, 39, 978
Zandi, 2010, Predicting temporal lobe epileptic seizures based on zero-crossing interval analysis in scalp EEG, 5537
Zandi, 2013, Predicting epileptic seizures in scalp EEG based on a variational Bayesian Gaussian mixture model of zero-crossing intervals, IEEE Trans Biomed Eng, 60, 1401, 10.1109/TBME.2012.2237399
Aarabi, 2012, A rule-based seizure prediction method for focal neocortical epilepsy, Clin Neurophysiol, 123, 1111, 10.1016/j.clinph.2012.01.014
Schelter, 2011, Seizure prediction in epilepsy: From circadian concepts via probabilistic forecasting to statistical evaluation, 1624
Wang, 2010, A novel reinforcement learning framework for online adaptive seizure prediction, 499
Li, 2013, Seizure prediction using spike rate of intracranial EEG, IEEE Trans Neural Syst Rehabil Eng, 21, 880, 10.1109/TNSRE.2013.2282153
Niknazar, 2016, Epileptic seizure prediction using a new similarity index for chaotic signals, Int J Bifurc Chaos, 26, 10.1142/S0218127416501868
Miri, 2011, A new seizure prediction method based on return map, 244
Rogowski, 1981, On the prediction of epileptic seizures, Biol Cybern, 42, 9, 10.1007/BF00335153
Salant, 1998, Prediction of epileptic seizures from two-channel EEG, Med Biol Eng Comput, 36, 549, 10.1007/BF02524422
Zhu, 2009, Epileptic seizure prediction by using empirical mode decomposition and complexity analysis of single-channel scalp electroencephalogram, 1
Zheng, 2014, Epileptic seizure prediction using phase synchronization based on bivariate empirical mode decomposition, Clin Neurophysiol, 125, 1104, 10.1016/j.clinph.2013.09.047
Williamson, 2012, Seizure prediction using EEG spatiotemporal correlation structure, Epilepsy Behav, 25, 230, 10.1016/j.yebeh.2012.07.007
Kuhlmann, 2010, Patient-specific bivariate-synchrony-based seizure prediction for short prediction horizons, Epilepsy Res, 91, 214, 10.1016/j.eplepsyres.2010.07.014
Sackellares, 2006, Predictability analysis for an automated seizure prediction algorithm, J Clin Neurophysiol, 23, 509, 10.1097/00004691-200612000-00003
Bedeeuzzaman, 2014, Seizure prediction using statistical dispersion measures of intracranial EEG, Biomed Signal Process Control, 10, 338, 10.1016/j.bspc.2012.12.001
Iasemidis, 2005, Long-term prospective on-line real-time seizure prediction, Clin Neurophysiol, 116, 532, 10.1016/j.clinph.2004.10.013
Chaovalitwongse, 2005, Performance of a seizure warning algorithm based on the dynamics of intracranial EEG, Epilepsy Res, 64, 93, 10.1016/j.eplepsyres.2005.03.009
Pardalos, 2004, Seizure warning algorithm based on optimization and nonlinear dynamics, Math Program, 101, 365, 10.1007/s10107-004-0529-4
Elger, 1998, Seizure prediction by non-linear time series analysis of brain electrical activity, Eur J Neurosci, 10, 786, 10.1046/j.1460-9568.1998.00090.x
Mormann, 2005, On the predictability of epileptic seizures, Clin Neurophysiol, 116, 569, 10.1016/j.clinph.2004.08.025
Chisci, 2010, Real-time epileptic seizure prediction using AR models and support vector machines, IEEE Trans Biomed Eng, 57, 1124, 10.1109/TBME.2009.2038990
Hung, 2010, VLSI implementation for epileptic seizure prediction system based on wavelet and chaos theory, 364
Chiang, 2011, Seizure prediction based on classification of EEG synchronization patterns with on-line retraining and post-processing scheme, 7564
Gadhoumi, 2013, Seizure prediction in patients with mesial temporal lobe epilepsy using EEG measures of state similarity, Clin Neurophysiol, 124, 1745, 10.1016/j.clinph.2013.04.006
Wang, 2013, Online seizure prediction using an adaptive learning approach, IEEE Trans Knowl Data Eng, 25, 2854, 10.1109/TKDE.2013.151
Costa, 2008, Epileptic seizure classification using neural networks with 14 features, 281
Bandarabadi, 2015, Epileptic seizure prediction using relative spectral power features, Clin Neurophysiol, 126, 237, 10.1016/j.clinph.2014.05.022
Vahabi, 2015, Online epileptic seizure prediction using wavelet-based bi-phase correlation of electrical signals tomography, Int J Neural Syst, 25, 10.1142/S0129065715500288
Myers, 2016, Seizure prediction and detection via phase and amplitude lock values, Front Hum Neurosci, 10, 10.3389/fnhum.2016.00080
Consul, 2013, Hardware efficient seizure prediction algorithm
Park, 2011, Seizure prediction with spectral power of EEG using cost-sensitive support vector machines, Epilepsia, 52, 1761, 10.1111/j.1528-1167.2011.03138.x
Moghim, 2014, Predicting epileptic seizures in advance, PLoS One, 9, 10.1371/journal.pone.0099334
Mirowski, 2009, Classification of patterns of EEG synchronization for seizure prediction, Clin Neurophysiol, 120, 1927, 10.1016/j.clinph.2009.09.002
Ghaderyan, 2014, An efficient seizure prediction method using KNN-based undersampling and linear frequency measures, J Neurosci Methods, 232, 134, 10.1016/j.jneumeth.2014.05.019
Direito, 2017, A realistic seizure prediction study based on multiclass SVM, Int J Neural Syst, 27, 10.1142/S012906571750006X
Bradley Andrew, 1997, The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recognit, 30, 1145, 10.1016/S0031-3203(96)00142-2
Ramgopal Sriram, 2014, Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy, Epilepsy Behav, 37, 291, 10.1016/j.yebeh.2014.06.023
Brinkmann Benjamin, 2015, Forecasting seizures using intracranial EEG measures and SVM in naturally occurring canine epilepsy, PLoS One, 10.1371/journal.pone.0133900
Wong Kin Foon Kevin, 2006, Modelling non-stationary variance in EEG time series by state space GARCH model, Comput Biol Med, 36.12, 1327, 10.1016/j.compbiomed.2005.10.001
Schachter Steven, 1993, Advances in the assessment of refractory epilepsy, Epilepsia, 34
Park Yun, 2011, Seizure prediction with spectral power of EEG using cost-sensitive support vector machines, Epilepsia, 52
Berendt, 2018, Epilepsy
Kshirsagar, 2016, Prediction of neurological disorders using optimized neural network
Hagan, 2008, Neural network design
Shivanandan, 2010
Alotaiby, 2014, EEG seizure detection and prediction algorithms: a survey, EURASIP J Adv Signal Process, 2014, 183, 10.1186/1687-6180-2014-183
Donald, 1991, A general regression neural network, IEEE Trans Neural Netw, 2
Serap AYDIN, 2010, Determination of autoregressive model orders for seizure detection, Turk J Electr Eng Comput Sci, 18
Aarabi, 2009, EEG seizure prediction: measures and challenges
Dean, 2018
Jones, 1998, Comparing measures of sample skewness and kurtosis, J Roy Stat Soc Ser D Stat, 47, 183, 10.1111/1467-9884.00122
https://brownmath.com/stat/shape.htm. (Accessed on 29.03.2017, 9.00 pm).
Mouhammad Usman, 2017, Epileptic seizure prediction using machine learning methods, Hindawi, Comput Math Methods Med
Westfall, 2014, Kurtosis as peakedness, 1905 R.I.P., Am Stat, 68, 191, 10.1080/00031305.2014.917055
https://electronics.stackexchange.com/questions/77675/definition-of-power-signals-and-energy-signals. (Accessed on 31.03.2018, 9.43 am).
Direito, 2008, Combining energy and wavelet transform for epileptic seizure prediction in an advanced computational system
Rasekhi, 2015, Epileptic seizure prediction based on ratio and differential linear univariate features, J Med Signals Sens, 5, 1, 10.4103/2228-7477.150371
Padmasair, 2010, Linear prediction modelling for the analysis of the epileptic EEG
Alkan, 2005, Automatic seizure detection in EEG using logistic regression and artificial neural network, J Neurosci Methods, 148, 167, 10.1016/j.jneumeth.2005.04.009
Kim, 2013, Coercively adjusted auto regression model for forecasting in epilepsy EEG, Comput Math Methods Med, 2013, 545613, 10.1155/2013/545613
Sudalaimani, 2017, Seizure prediction using general regression neural network