In-vitro biomineralization and biocompatibility of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites

Bioactive Materials - Tập 5 - Trang 891-901 - 2020
Yee-Hsien Ho1, Kun Man2, Sameehan S. Joshi1, Mangesh V. Pantawane1, Tso-Chang Wu1, Yong Yang2, Narendra B. Dahotre1
1Laboratory for Laser Aided Additive and Subtractive Manufacturing, Department of Materials Science and Engineering, University of North Texas, 1150 Union Circle 305310, Denton, TX, 76203-5017, USA
2Department of Biomedical Engineering, University of North Texas, 1150 Union Circle 305310, Denton, TX, 76203-5017, USA

Tài liệu tham khảo

Song, 2007, A possible biodegradable magnesium implant material, Adv. Eng. Mater., 9, 298, 10.1002/adem.200600252 Staiger, 2006, Magnesium and its alloys as orthopedic biomaterials: a review, Biomaterials, 27, 1728, 10.1016/j.biomaterials.2005.10.003 Sunil, 2013, Role of biomineralization on the degradation of fine grained az31 magnesium alloy processed by groove pressing, Mater. Sci. Eng. C, 33, 1607, 10.1016/j.msec.2012.12.095 Gu, 2010, A review on magnesium alloys as biodegradable materials, Front. Mater. Sci. China, 4, 111, 10.1007/s11706-010-0024-1 Erdmann, 2011, Biomechanical testing and degradation analysis of mgca0. 8 alloy screws: a comparative in vivo study in rabbits, Acta Biomater., 7, 1421, 10.1016/j.actbio.2010.10.031 Y. Xin, K. Huo, H. Tao, G. Tang, P. K. Chu, Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment, Acta Biomater. 4 (6). Zeng, 2008, Progress and challenge for magnesium alloys as biomaterials, Adv. Eng. Mater., 10, B3, 10.1002/adem.200800035 Song, 1999, Corrosion mechanisms of magnesium alloys, Adv. Eng. Mater., 1, 11, 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N Ding, 2014, Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review, J. Mater. Chem. B, 2, 1912, 10.1039/C3TB21746A Sezer, 2018, Review of magnesium-based biomaterials and their applications, J. Magnes. Alloys., 6, 23, 10.1016/j.jma.2018.02.003 El-Rahman, 2003, Neuropathology of aluminum toxicity in rats (glutamate and gaba impairment), Pharmacol. Res., 47, 189, 10.1016/S1043-6618(02)00336-5 Nakamura, 1997, Differences in behavior among the chlorides of seven rare earth elements administered intravenously to rats, Toxicol. Sci., 37, 106, 10.1093/toxsci/37.2.106 Jones, 2016, Bioglass and bioactive glasses and their impact on healthcare, Int. J. Appl. Glass Sci., 7, 423, 10.1111/ijag.12252 P.-H. Kuo, S. S. Joshi, X. Lu, Y.-H. Ho, Y. Xiang, N. B. Dahotre, J. Du, Laser coating of bioactive glasses on bioimplant titanium alloys, Int. J. Appl. Glass Sci.. 10 (3) 2019 307-320. Orlovskii, 2002, Hydroxyapatite and hydroxyapatite-based ceramics, Inorg. Mater., 38, 973, 10.1023/A:1020585800572 Albrektsson, 2001, Osteoinduction, osteoconduction and osseointegration, Eur. Spine J., 10, S96 Paital, 2009, Calcium phosphate coatings for bio-implant applications: materials, performance factors, and methodologies, Mater. Sci. Eng. R Rep., 66, 1, 10.1016/j.mser.2009.05.001 Wen, 2009, Characterization and degradation behavior of az31 alloy surface modified by bone-like hydroxyapatite for implant applications, Appl. Surf. Sci., 255, 6433, 10.1016/j.apsusc.2008.09.078 Cui, 2008, Calcium phosphate coating on magnesium alloy for modification of degradation behavior, Front. Mater. Sci. China, 2, 143, 10.1007/s11706-008-0024-6 Song, 2008, Electrodeposition of hydroxyapatite coating on az91d magnesium alloy for biomaterial application, Mater. Lett., 62, 3276, 10.1016/j.matlet.2008.02.048 Ho, 2020, In-vitro bio-corrosion behavior of friction stir additively manufactured az31b magnesium alloy-hydroxyapatite composites, Mater. Sci. Eng. C, 110632, 10.1016/j.msec.2020.110632 Wu, 2017, Microstructure and corrosion behavior of laser surface-treated az31b mg bio-implant material, Laser Med. Sci., 32, 797, 10.1007/s10103-017-2174-1 Witte, 2007, Biodegradable magnesium–hydroxyapatite metal matrix composites, Biomaterials, 28, 2163, 10.1016/j.biomaterials.2006.12.027 Khalil, 2012, Effect of high-frequency induction heat sintering conditions on the microstructure and mechanical properties of nanostructured magnesium/hydroxyapatite nanocomposites, Mater. Des., 36, 58, 10.1016/j.matdes.2011.11.008 Khanra, 2010, Microstructure and mechanical properties of mg-hap composites, Bull. Mater. Sci., 33, 43, 10.1007/s12034-010-0006-z Sunil, 2014, Processing and mechanical behavior of lamellar structured degradable magnesium–hydroxyapatite implants, J. Mech. Behav. Biomed. Mater., 40, 178, 10.1016/j.jmbbm.2014.08.016 Sunil, 2014, Friction stir processing of magnesium–nanohydroxyapatite composites with controlled in vitro degradation behavior, Mater. Sci. Eng. C, 39, 315, 10.1016/j.msec.2014.03.004 Kalakuntla, 2020, Laser patterned hydroxyapatite surfaces on az31b magnesium alloy for consumable implant applications, Materialia, 100693, 10.1016/j.mtla.2020.100693 Kannan, 2011, In vitro degradation behaviour of a friction stir processed magnesium alloy, J. Mater. Sci. Mater. Med., 22, 2397, 10.1007/s10856-011-4429-x Sunil, 2014, Nano-hydroxyapatite reinforced az31 magnesium alloy by friction stir processing: a solid state processing for biodegradable metal matrix composites, J. Mater. Sci. Mater. Med., 25, 975, 10.1007/s10856-013-5127-7 Ho, 2016 Van Oss, 1988, Additive and nonadditive surface tension components and the interpretation of contact angles, Langmuir, 4, 884, 10.1021/la00082a018 Paital, 2010, Wetting effects on in vitro bioactivity and in vitro biocompatibility of laser micro-textured ca-p coating, Biofabrication, 2, 10.1088/1758-5082/2/2/025001 Bargir, 2009, The use of contact angle measurements to estimate the adhesion propensity of calcium carbonate to solid substrates in water, Appl. Surf. Sci., 255, 4873, 10.1016/j.apsusc.2008.12.017 Ho, 2015, Laser surface modification of az31b mg alloy for bio-wettability, J. Biomater. Appl., 29, 915, 10.1177/0885328214551156 Ma, 2008, Friction stir processing technology: a review, Metall. Mater. Trans., 39, 642, 10.1007/s11661-007-9459-0 Wilson, 2005, Mediation of biomaterial–cell interactions by adsorbed proteins: a review, Tissue Eng., 11, 1, 10.1089/ten.2005.11.1 Sunil, 2016, In vitro and in vivo studies of biodegradable fine grained az31 magnesium alloy produced by equal channel angular pressing, Mater. Sci. Eng. C, 59, 356, 10.1016/j.msec.2015.10.028 Ardizzone, 1997, Magnesium salts and oxide: an xps overview, Appl. Surf. Sci., 119, 253, 10.1016/S0169-4332(97)00180-3 Biesinger, 2015 Song, 2007, Control of biodegradation of biocompatable magnesium alloys, Corrosion Sci., 49, 1696, 10.1016/j.corsci.2007.01.001 Ellies, 1992, Crystallographic changes in calcium phosphates during plasma-spraying, Biomaterials, 13, 313, 10.1016/0142-9612(92)90055-S Liu, 2008, An in vitro evaluation of the ca/p ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration, Acta Biomater., 4, 1472, 10.1016/j.actbio.2008.02.025 Alehosseini, 2018, Hemocompatible and bioactive heparin-loaded pcl-α-tcp fibrous membranes for bone tissue engineering, Macromol. Biosci., 18, 1800020, 10.1002/mabi.201800020 Bacakova, 2011, Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants, Biotechnol. Adv., 29, 739, 10.1016/j.biotechadv.2011.06.004 Gao, 2020, Layer-by-layer deposition of bioactive layers on magnesium alloy stent materials to improve corrosion resistance and biocompatibility, Bioact. Mater., 5, 611, 10.1016/j.bioactmat.2020.04.016 Tsai, 2002, Platelet adhesion to polystyrene-based surfaces preadsorbed with plasmas selectively depleted in fibrinogen, fibronectin, vitronectin, or von willebrand's factor, J. Biomed. Mater. Res., 60, 348, 10.1002/jbm.10048 Zhang, 2017, The influence of surface chemistry on adsorbed fibrinogen conformation, orientation, fiber formation and platelet adhesion, Acta Biomater., 54, 164, 10.1016/j.actbio.2017.03.002