In-vitro biomineralization and biocompatibility of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites
Tài liệu tham khảo
Song, 2007, A possible biodegradable magnesium implant material, Adv. Eng. Mater., 9, 298, 10.1002/adem.200600252
Staiger, 2006, Magnesium and its alloys as orthopedic biomaterials: a review, Biomaterials, 27, 1728, 10.1016/j.biomaterials.2005.10.003
Sunil, 2013, Role of biomineralization on the degradation of fine grained az31 magnesium alloy processed by groove pressing, Mater. Sci. Eng. C, 33, 1607, 10.1016/j.msec.2012.12.095
Gu, 2010, A review on magnesium alloys as biodegradable materials, Front. Mater. Sci. China, 4, 111, 10.1007/s11706-010-0024-1
Erdmann, 2011, Biomechanical testing and degradation analysis of mgca0. 8 alloy screws: a comparative in vivo study in rabbits, Acta Biomater., 7, 1421, 10.1016/j.actbio.2010.10.031
Y. Xin, K. Huo, H. Tao, G. Tang, P. K. Chu, Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment, Acta Biomater. 4 (6).
Zeng, 2008, Progress and challenge for magnesium alloys as biomaterials, Adv. Eng. Mater., 10, B3, 10.1002/adem.200800035
Song, 1999, Corrosion mechanisms of magnesium alloys, Adv. Eng. Mater., 1, 11, 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
Ding, 2014, Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review, J. Mater. Chem. B, 2, 1912, 10.1039/C3TB21746A
Sezer, 2018, Review of magnesium-based biomaterials and their applications, J. Magnes. Alloys., 6, 23, 10.1016/j.jma.2018.02.003
El-Rahman, 2003, Neuropathology of aluminum toxicity in rats (glutamate and gaba impairment), Pharmacol. Res., 47, 189, 10.1016/S1043-6618(02)00336-5
Nakamura, 1997, Differences in behavior among the chlorides of seven rare earth elements administered intravenously to rats, Toxicol. Sci., 37, 106, 10.1093/toxsci/37.2.106
Jones, 2016, Bioglass and bioactive glasses and their impact on healthcare, Int. J. Appl. Glass Sci., 7, 423, 10.1111/ijag.12252
P.-H. Kuo, S. S. Joshi, X. Lu, Y.-H. Ho, Y. Xiang, N. B. Dahotre, J. Du, Laser coating of bioactive glasses on bioimplant titanium alloys, Int. J. Appl. Glass Sci.. 10 (3) 2019 307-320.
Orlovskii, 2002, Hydroxyapatite and hydroxyapatite-based ceramics, Inorg. Mater., 38, 973, 10.1023/A:1020585800572
Albrektsson, 2001, Osteoinduction, osteoconduction and osseointegration, Eur. Spine J., 10, S96
Paital, 2009, Calcium phosphate coatings for bio-implant applications: materials, performance factors, and methodologies, Mater. Sci. Eng. R Rep., 66, 1, 10.1016/j.mser.2009.05.001
Wen, 2009, Characterization and degradation behavior of az31 alloy surface modified by bone-like hydroxyapatite for implant applications, Appl. Surf. Sci., 255, 6433, 10.1016/j.apsusc.2008.09.078
Cui, 2008, Calcium phosphate coating on magnesium alloy for modification of degradation behavior, Front. Mater. Sci. China, 2, 143, 10.1007/s11706-008-0024-6
Song, 2008, Electrodeposition of hydroxyapatite coating on az91d magnesium alloy for biomaterial application, Mater. Lett., 62, 3276, 10.1016/j.matlet.2008.02.048
Ho, 2020, In-vitro bio-corrosion behavior of friction stir additively manufactured az31b magnesium alloy-hydroxyapatite composites, Mater. Sci. Eng. C, 110632, 10.1016/j.msec.2020.110632
Wu, 2017, Microstructure and corrosion behavior of laser surface-treated az31b mg bio-implant material, Laser Med. Sci., 32, 797, 10.1007/s10103-017-2174-1
Witte, 2007, Biodegradable magnesium–hydroxyapatite metal matrix composites, Biomaterials, 28, 2163, 10.1016/j.biomaterials.2006.12.027
Khalil, 2012, Effect of high-frequency induction heat sintering conditions on the microstructure and mechanical properties of nanostructured magnesium/hydroxyapatite nanocomposites, Mater. Des., 36, 58, 10.1016/j.matdes.2011.11.008
Khanra, 2010, Microstructure and mechanical properties of mg-hap composites, Bull. Mater. Sci., 33, 43, 10.1007/s12034-010-0006-z
Sunil, 2014, Processing and mechanical behavior of lamellar structured degradable magnesium–hydroxyapatite implants, J. Mech. Behav. Biomed. Mater., 40, 178, 10.1016/j.jmbbm.2014.08.016
Sunil, 2014, Friction stir processing of magnesium–nanohydroxyapatite composites with controlled in vitro degradation behavior, Mater. Sci. Eng. C, 39, 315, 10.1016/j.msec.2014.03.004
Kalakuntla, 2020, Laser patterned hydroxyapatite surfaces on az31b magnesium alloy for consumable implant applications, Materialia, 100693, 10.1016/j.mtla.2020.100693
Kannan, 2011, In vitro degradation behaviour of a friction stir processed magnesium alloy, J. Mater. Sci. Mater. Med., 22, 2397, 10.1007/s10856-011-4429-x
Sunil, 2014, Nano-hydroxyapatite reinforced az31 magnesium alloy by friction stir processing: a solid state processing for biodegradable metal matrix composites, J. Mater. Sci. Mater. Med., 25, 975, 10.1007/s10856-013-5127-7
Ho, 2016
Van Oss, 1988, Additive and nonadditive surface tension components and the interpretation of contact angles, Langmuir, 4, 884, 10.1021/la00082a018
Paital, 2010, Wetting effects on in vitro bioactivity and in vitro biocompatibility of laser micro-textured ca-p coating, Biofabrication, 2, 10.1088/1758-5082/2/2/025001
Bargir, 2009, The use of contact angle measurements to estimate the adhesion propensity of calcium carbonate to solid substrates in water, Appl. Surf. Sci., 255, 4873, 10.1016/j.apsusc.2008.12.017
Ho, 2015, Laser surface modification of az31b mg alloy for bio-wettability, J. Biomater. Appl., 29, 915, 10.1177/0885328214551156
Ma, 2008, Friction stir processing technology: a review, Metall. Mater. Trans., 39, 642, 10.1007/s11661-007-9459-0
Wilson, 2005, Mediation of biomaterial–cell interactions by adsorbed proteins: a review, Tissue Eng., 11, 1, 10.1089/ten.2005.11.1
Sunil, 2016, In vitro and in vivo studies of biodegradable fine grained az31 magnesium alloy produced by equal channel angular pressing, Mater. Sci. Eng. C, 59, 356, 10.1016/j.msec.2015.10.028
Ardizzone, 1997, Magnesium salts and oxide: an xps overview, Appl. Surf. Sci., 119, 253, 10.1016/S0169-4332(97)00180-3
Biesinger, 2015
Song, 2007, Control of biodegradation of biocompatable magnesium alloys, Corrosion Sci., 49, 1696, 10.1016/j.corsci.2007.01.001
Ellies, 1992, Crystallographic changes in calcium phosphates during plasma-spraying, Biomaterials, 13, 313, 10.1016/0142-9612(92)90055-S
Liu, 2008, An in vitro evaluation of the ca/p ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration, Acta Biomater., 4, 1472, 10.1016/j.actbio.2008.02.025
Alehosseini, 2018, Hemocompatible and bioactive heparin-loaded pcl-α-tcp fibrous membranes for bone tissue engineering, Macromol. Biosci., 18, 1800020, 10.1002/mabi.201800020
Bacakova, 2011, Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants, Biotechnol. Adv., 29, 739, 10.1016/j.biotechadv.2011.06.004
Gao, 2020, Layer-by-layer deposition of bioactive layers on magnesium alloy stent materials to improve corrosion resistance and biocompatibility, Bioact. Mater., 5, 611, 10.1016/j.bioactmat.2020.04.016
Tsai, 2002, Platelet adhesion to polystyrene-based surfaces preadsorbed with plasmas selectively depleted in fibrinogen, fibronectin, vitronectin, or von willebrand's factor, J. Biomed. Mater. Res., 60, 348, 10.1002/jbm.10048
Zhang, 2017, The influence of surface chemistry on adsorbed fibrinogen conformation, orientation, fiber formation and platelet adhesion, Acta Biomater., 54, 164, 10.1016/j.actbio.2017.03.002