Ubiquitin modifications

Cell Research - Tập 26 Số 4 - Trang 399-422 - 2016
Kirby N. Swatek1, David Komander1
1Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Goldknopf IL, French MF, Musso R, Busch H . Presence of protein A24 in rat liver nucleosomes. Proc Natl Acad Sci USA 1977; 74:5492–5495.

Cohen P . The origins of protein phosphorylation. Nat Cell Biol 2002; 4:E127–E130.

Verdin E, Ott M . 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol 2015; 16:258–264.

Hershko A, Ciechanover A . The ubiquitin system. Annu Rev Biochem 1998; 67:425–479.

Clague MJ, Heride C, Urbé S . The demographics of the ubiquitin system. Trends Cell Biol 2015; 25:417–426.

Pickart CM . Mechanisms underlying ubiquitination. Annu Rev Biochem 2001; 70:503–533.

Schulman BA, Harper JW . Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signaling pathways. Nat Rev Mol Cell Biol 2009; 10:319–331.

Ye Y, Rape M . Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 2009; 10:755–764.

Deshaies RJ, Joazeiro CAP . RING domain E3 ubiquitin ligases. Annu Rev Biochem 2009; 78:399–434.

Smit JJ, Sixma TK . RBR E3-ligases at work. EMBO Rep 2014; 15:142–154.

Rotin D, Kumar S . Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 2009; 10:398–409.

Husnjak K, Dikic I . Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem 2012; 81:291–322.

Komander D, Clague MJ, Urbé S . Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 2009; 10:550–563.

Clague MJ, Barsukov I, Coulson JM, Liu H, Rigden DJ, Urbé S . Deubiquitylases from genes to organism. Physiol Rev 2013; 93:1289–1315.

Peng J, Schwartz D, Elias JE, et al. A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 2003; 21:921–926.

Kim W, Bennett EJ, Huttlin EL, et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 2011; 44:325–340.

Wagner SA, Beli P, Weinert BT, et al. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 2011; 10:M111.013284.

Kaiser SE, Riley BE, Shaler TA, et al. Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools. Nat Methods 2011; 8:691–696.

Komander D, Rape M . The ubiquitin code. Annu Rev Biochem 2012; 81:203–229.

Jenuwein T, Allis CD . Translating the histone code. Science 2001; 293:1074–1080.

Xu P, Duong DM, Seyfried NT, et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 2009; 137:133–145.

Dammer EB, Na CH, Xu P, et al. Polyubiquitin linkage profiles in three models of proteolytic stress suggest the etiology of Alzheimer disease. J Biol Chem 2011; 286:10457–10465.

Ziv I, Matiuhin Y, Kirkpatrick DS, et al. A perturbed ubiquitin landscape distinguishes between ubiquitin in trafficking and in proteolysis. Mol Cell Proteomics 2011; 10:M111.009753.

Chen ZJ, Sun LJ . Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 2009; 33:275–286.

Kulathu Y, Komander D . Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol 2012; 13:508–523.

Galisson F, Mahrouche L, Courcelles M, et al. A novel proteomics approach to identify SUMOylated proteins and their modification sites in human cells. Mol Cell Proteomics 2011; 10:M110.004796–M110.004796.

Lamoliatte F, Bonneil E, Durette C, et al. Targeted identification of SUMOylation sites in human proteins using affinity enrichment and paralog-specific reporter ions. Mol Cell Proteomics 2013; 12:2536–2550.

Hendriks IA, D'Souza RCJ, Yang B, Verlaan-de Vries M, Mann M, Vertegaal ACO . Uncovering global SUMOylation signaling networks in a site-specific manner. Nat Struct Mol Biol 2014; 21:927–936.

Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009; 325:834–840.

Lundby A, Lage K, Weinert BT, et al. Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. Cell Rep 2012; 2:419–431.

Ohtake F, Saeki Y, Sakamoto K, et al. Ubiquitin acetylation inhibits polyubiquitin chain elongation. EMBO Rep 2015; 16:192–201.

Weinert BT, Schölz C, Wagner SA, et al. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep 2013; 4:842–851.

Lee HJ, Na K, Kwon MS, Kim H, Kim KS, Paik YK . Quantitative analysis of phosphopeptides in search of the disease biomarker from the hepatocellular carcinoma specimen. Proteomics 2009; 9:3395–3408.

Zhou H, Di Palma S, Preisinger C, et al. Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 2013; 12:260–271.

Lundby A, Secher A, Lage K, et al. Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 2012; 3:876.

Swaney DL, Beltrao P, Starita L, et al. Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 2013; 10:676–682.

Rikova K, Guo A, Zeng Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 2007; 131:1190–1203.

Olsen JV, Blagoev B, Gnad F, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 2006; 127:635–648.

Xia Z-P, Sun L, Chen X, et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 2009; 461:114–119.

Chen J, Chen ZJ . Regulation of NF-κB by ubiquitination. Curr Opin Immunol 2013; 25:4–12.

Rajsbaum R, García-Sastre A . Virology. Unanchored ubiquitin in virus uncoating. Science 2014; 346:427–428.

Fiesel FC, Ando M, Hudec R, et al. (Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation. EMBO Rep 2015; 16:1114–11130.

Lai YC, Kondapalli C, Lehneck R, et al. Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1. EMBO J 2015; 34:2840–2861.

Wauer T, Swatek KN, Wagstaff JL, et al. Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J 2015; 34:307–325.

Swaney DL, Rodríguez-Mias RA, Villén J . Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover. EMBO Rep 2015; 16:1131–1144.

Hospenthal MK, Mevissen TET, Komander D . Deubiquitinase-based analysis of ubiquitin chain architecture using Ubiquitin Chain Restriction (UbiCRest). Nat Protoc 2015; 10:349–361.

Sims JJ, Scavone F, Cooper EM, et al. Polyubiquitin-sensor proteins reveal localization and linkage-type dependence of cellular ubiquitin signaling. Nat Methods 2012; 9:303–309.

van Wijk SJL, Fiskin E, Putyrski M, et al. Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells. Mol Cell 2012; 47:797–809.

Newton K, Matsumoto ML, Wertz IE, et al. Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 2008; 134:668–678.

Matsumoto ML, Wickliffe KE, Dong KC, et al. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol Cell 2010; 39:477–484.

Matsumoto ML, Dong KC, Yu C, et al. Engineering and structural characterization of a linear polyubiquitin-specific antibody. J Mol Biol 2012; 418:134–144.

Ordureau A, Münch C, Harper JW . Quantifying ubiquitin signaling. Mol Cell 2015; 58:660–676.

Kirisako T, Kamei K, Murata S, et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J 2006; 25:4877–4887.

Komander D, Reyes-Turcu F, Licchesi JDF, Odenwaelder P, Wilkinson KD, Barford D . Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep 2009; 10:466–473.

Rahighi S, Ikeda F, Kawasaki M, et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 2009; 136:1098–1109.

Tokunaga F, Sakata S-I, Saeki Y, et al. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol 2009; 11:123–132.

Haas TL, Emmerich CH, Gerlach B, et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol Cell 2009; 36:831–844.

Gerlach B, Cordier SM, Schmukle AC, et al. Linear ubiquitination prevents inflammation and regulates immune signaling. Nature 2011; 471:591–596.

Smit JJ, Monteferrario D, Noordermeer SM, van Dijk WJ, van der Reijden BA, Sixma TK . The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension. EMBO J 2012; 31:3833–3844.

Stieglitz B, Morris-Davies AC, Koliopoulos MG, Christodoulou E, Rittinger K . LUBAC synthesizes linear ubiquitin chains via a thioester intermediate. EMBO Rep 2012; 13:840–846.

Stieglitz B, Rana RR, Koliopoulos MG, et al. Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP. Nature 2013; 503:422–426.

Lechtenberg BC, Rajput A, Sanishvili R, et al. Structure of a HOIP/E2∼ubiquitin complex reveals RBR E3 ligase mechanism and regulation. Nature 2016; 529:546–550.

Sato Y, Fujita H, Yoshikawa A, et al. Specific recognition of linear ubiquitin chains by the Npl4 zinc finger (NZF) domain of the HOIL-1L subunit of the linear ubiquitin chain assembly complex. Proc Natl Acad Sci USA 2011; 108:20520–20525.

Tokunaga F, Nishimasu H, Ishitani R, et al. Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-κB regulation. EMBO J 2012; 31:3856–3870.

Verhelst K, Carpentier I, Kreike M, et al. A20 inhibits LUBAC-mediated NF-κB activation by binding linear polyubiquitin chains via its zinc finger 7. EMBO J 2012; 31:3845–3855.

Ikeda F, Deribe YL, Skånland SS, et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 2011; 471:637–641.

Tokunaga F, Nakagawa T, Nakahara M, et al. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature 2011; 471:633–636.

Peltzer N, Rieser E, Taraborrelli L, et al. HOIP deficiency causes embryonic lethality by aberrant TNFR1-mediated endothelial cell death. Cell Rep 2014; 9:153–165.

Kumari S, Redouane Y, López-Mosqueda J, et al. Sharpin prevents skin inflammation by inhibiting TNFR1-induced keratinocyte apoptosis. 2014; 3:e03422.

Sasaki Y, Sano S, Nakahara M, et al. Defective immune responses in mice lacking LUBAC-mediated linear ubiquitination in B cells. EMBO J 2013; 32:2463–2476.

MacDuff DA, Reese TA, Kimmey JM, et al. Phenotypic complementation of genetic immunodeficiency by chronic herpesvirus infection. eLife 2015; 4:e04494.

Park Y, Jin H-S, Lopez J, et al. SHARPIN controls regulatory T cells by negatively modulating the T cell antigen receptor complex. Nat Immunol 2016; 17:286–296.

Boisson B, Laplantine E, Dobbs K, et al. Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J Exp Med 2015; 212:939–951.

Boisson B, Laplantine E, Prando C, et al. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat Immunol 2012; 13:1178–1186.

Walczak H, Iwai K, Dikic I . Generation and physiological roles of linear ubiquitin chains. BMC Biol 2012; 10:23.

Iwai K, Fujita H, Sasaki Y . Linear ubiquitin chains: NF-κB signaling, cell death and beyond. Nat Rev Mol Cell Biol 2014; 15:503–508.

Sato Y, Goto E, Shibata Y, et al. Structures of CYLD USP with Met1- or Lys63-linked diubiquitin reveal mechanisms for dual specificity. Nat Struct Mol Biol 2015; 22:222–229.

Keusekotten K, Elliott PR, Glockner L, et al. OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell 2013; 153:1312–1326.

Rivkin E, Almeida SM, Ceccarelli DF, et al. The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature 2013; 498:318–324.

Fiil BK, Damgaard RB, Wagner SA, et al. OTULIN restricts Met1-linked ubiquitination to control innate immune signaling. Mol Cell 2013; 50:818–830.

Elliott PR, Nielsen SV, Marco-Casanova P, et al. Molecular basis and regulation of OTULIN-LUBAC interaction. Mol Cell 2014; 54:335–348.

Schaeffer V, Akutsu M, Olma MH, Gomes LC, Kawasaki M, Dikic I . Binding of OTULIN to the PUB domain of HOIP controls NF-κB signaling. Mol Cell 2014; 54:349–361.

Takiuchi T, Nakagawa T, Tamiya H, et al. Suppression of LUBAC-mediated linear ubiquitination by a specific interaction between LUBAC and the deubiquitinases CYLD and OTULIN. Genes Cells 2014; 19:254–272.

Draber P, Kupka S, Reichert M, et al. LUBAC-recruited CYLD and A20 regulate gene activation and cell death by exerting opposing effects on linear ubiquitin in signaling complexes. Cell Rep 2015; 13:2258–2272.

Mevissen TET, Hospenthal MK, Geurink PP, et al. OTU Deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell 2013; 154:169–184.

De A, Dainichi T, Rathinam CV, Ghosh S . The deubiquitinase activity of A20 is dispensable for NF-κB signaling. EMBO Rep 2014; 15:775–783.

Wertz IE, Newton K, Seshasayee D, et al. Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation. Nature 2015; 528:370–375.

Elia AEH, Boardman AP, Wang DC, et al. Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response. Mol Cell 2015; 59:867–881.

Wu-Baer F, Lagrazon K, Yuan W, Baer R . The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin. J Biol Chem 2003; 278:34743–34746.

Morris JR, Solomon E . BRCA1 : BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair. Hum Mol Genet 2004; 13:807–817.

Ordureau A, Sarraf SA, Duda DM, et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol Cell 2014; 56:360–375.

Durcan TM, Tang MY, Pérusse JR, et al. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin. EMBO J 2014; 33:2473–2491.

Cunningham CN, Baughman JM, Phu L, et al. USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat Cell Biol 2015; 17:160–169.

Ordureau A, Heo J-M, Duda DM, et al. Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proc Natl Acad Sci USA 2015; 112:6637–6642.

Bingol B, Tea JS, Phu L, et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 2014; 510:370–375.

Liang J-R, Martinez A, Lane JD, Mayor U, Clague MJ, Urbé S . USP30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death. EMBO Rep 2015; 16:618–627.

Faesen AC, Luna-Vargas MPA, Geurink PP, et al. The differential modulation of USP activity by internal regulatory domains, interactors and eight ubiquitin chain types. Chem Biol 2011; 18:1550–1561.

Manzanillo PS, Ayres JS, Watson RO, et al. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 2013; 501:512–516.

Hospenthal MK, Freund SMV, Komander D . Assembly, analysis and architecture of atypical ubiquitin chains. Nat Struct Mol Biol 2013; 20:555–565.

Lin DY-W, Diao J, Zhou D, Chen J . Biochemical and structural studies of a HECT-like ubiquitin ligase from Escherichia coli O157:H7. J Biol Chem 2011; 286:441–449.

Bremm A, Komander D . Emerging roles for Lys11-linked polyubiquitin in cellular regulation. Trends Biochem Sci 2011; 36:355–363.

Wickliffe KE, Williamson A, Meyer H-J, Kelly A, Rape M . K11-linked ubiquitin chains as novel regulators of cell division. Trends Cell Biol 2011; 21:656–663.

Grice GL, Lobb IT, Weekes MP, Gygi SP, Antrobus R, Nathan JA . The proteasome distinguishes between heterotypic and homotypic lysine-11-linked polyubiquitin chains. Cell Rep 2015; 12:545–553.

Meyer H-J, Rape M . Enhanced protein degradation by branched ubiquitin chains. Cell 2014; 157:910–921.

Min M, Mevissen TET, De Luca M, Komander D, Lindon C . Efficient APC/C substrate degradation in cells undergoing mitotic exit depends on K11 ubiquitin linkages. Mol Biol Cell 2015; 26:4325–4332.

Hu H, Brittain GC, Chang J-H, et al. OTUD7B controls non-canonical NF-κB activation through deubiquitination of TRAF3. Nature 2013; 494:371–374.

Hu H, Wang H, Xiao Y, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med 2016; 213:399–414.

Pareja F, Ferraro DA, Rubin C, et al. Deubiquitination of EGFR by Cezanne-1 contributes to cancer progression. Oncogene 2012; 31:4599–4608.

Bremm A, Moniz S, Mader J, Rocha S, Komander D . Cezanne (OTUD7B) regulates HIF-1α homeostasis in a proteasome-independent manner. EMBO Rep 2014; 15:1268–1277.

Moniz S, Bandarra D, Biddlestone J, et al. Cezanne regulates E2F1-dependent HIF2α expression. J Cell Sci 2015; 128:3082–3093.

Geisler S, Holmström KM, Skujat D, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 2010; 12:119–131.

Gatti M, Pinato S, Maiolica A, et al. RNF168 Promotes noncanonical K27 ubiquitination to signal DNA damage. Cell Rep 2015; 10:226–238.

Liu Z, Chen P, Gao H, et al. Ubiquitylation of autophagy receptor Optineurin by HACE1 activates selective autophagy for tumor suppression. Cancer Cell 2014; 26:106–120.

Palicharla VR, Maddika S . HACE1 mediated K27 ubiquitin linkage leads to YB-1 protein secretion. Cell Signal 2015; 27:2355–2362.

You J, Pickart CM . A HECT domain E3 enzyme assembles novel polyubiquitin chains. J Biol Chem 2001; 276:19871–19878.

Michel MA, Elliott PR, Swatek KN, et al. Assembly and specific recognition of k29- and k33-linked polyubiquitin. Mol Cell 2015; 58:95–109.

Kristariyanto YA, Abdul Rehman SA, Campbell DG, et al. K29-selective ubiquitin binding domain reveals structural basis of specificity and heterotypic nature of k29 polyubiquitin. Mol Cell 2015; 58:83–94.

Besche HC, Sha Z, Kukushkin NV, et al. Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates. EMBO J 2014; 33:1159–1176.

Crosas B, Hanna J, Kirkpatrick DS, et al. Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 2006; 127:1401–1413.

Virdee S, Ye Y, Nguyen DP, Komander D, Chin JW . Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase. Nat Chem Biol 2010; 6:750–757.

Licchesi JDF, Mieszczanek J, Mevissen TET, et al. An ankyrin-repeat ubiquitin-binding domain determines TRABID's specificity for atypical ubiquitin chains. Nat Struct Mol Biol 2012; 19:62–71.

Tran H, Hamada F, Schwarz-Romond T, Bienz M . Trabid, a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains. Genes Dev 2008; 22:528–542.

Jin J, Xie X, Xiao Y, et al. Epigenetic regulation of the expression of Il12 and Il23 and autoimmune inflammation by the deubiquitinase Trabid. Nat Immunol 2016; 17:259–268.

Kristariyanto YA, Choi S-Y, Rehman SAA, et al. Assembly and structure of Lys33-linked polyubiquitin reveals distinct conformations. Biochem J 2015; 467:345–352.

Kim JB, Kim SY, Kim BM, et al. Identification of a novel anti-apoptotic E3 ubiquitin ligase that ubiquitinates antagonists of inhibitor of apoptosis proteins SMAC, HtrA2, and ARTS. J Biol Chem 2013; 288:12014–12021.

Yuan W-C, Lee Y-R, Lin S-Y, et al. K33-linked polyubiquitination of Coronin 7 by Cul3-KLHL20 ubiquitin E3 ligase regulates protein trafficking. Mol Cell 2014; 54:586–600.

Thrower JS, Hoffman L, Rechsteiner M, Pickart CM . Recognition of the polyubiquitin proteolytic signal. EMBO J 2000; 19:94–102.

Sakata E, Bohn S, Mihalache O, et al. Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy. Proc Natl Acad Sci USA 2012; 109:1479–1484.

Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A . Complete subunit architecture of the proteasome regulatory particle. Nature 2012; 482:186–191.

Matyskiela ME, Lander GC, Martin A . Conformational switching of the 26S proteasome enables substrate degradation. Nat Struct Mol Biol 2013; 20:781–788.

Kirkpatrick DS, Hathaway NA, Hanna J, et al. Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat Cell Biol 2006; 8:700–710.

Flick K, Ouni I, Wohlschlegel JA, et al. Proteolysis-independent regulation of the transcription factor Met4 by a single Lys 48-linked ubiquitin chain. Nat Cell Biol 2004; 6:634–641.

Flick K, Raasi S, Zhang H, Yen JL, Kaiser P . A ubiquitin-interacting motif protects polyubiquitinated Met4 from degradation by the 26S proteasome. Nat Cell Biol 2006; 8:509–515.

Lu Y, Lee B-H, King RW, Finley D, Kirschner MW . Substrate degradation by the proteasome: a single-molecule kinetic analysis. Science 2015; 348:1250834.

Kanayama A, Seth RB, Sun L, et al. TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell 2004; 15:535–548.

Kulathu Y, Akutsu M, Bremm A, Hofmann K, Komander D . Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain. Nat Struct Mol Biol 2009; 16:1328–1330.

Sato Y, Yoshikawa A, Yamashita M, Yamagata A, Fukai S . Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by NZF domains of TAB2 and TAB3. EMBO J 2009; 28:3903–3909.

Ivins FJ, Montgomery MG, Smith SJM, Morris-Davies AC, Taylor IA, Rittinger K . NEMO oligomerization and its ubiquitin-binding properties. Biochem J 2009; 421:243–251.

Emmerich CH, Ordureau A, Strickson S, et al. Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proc Natl Acad Sci USA 2013; 110:15247–15252.

Laplantine E, Fontan E, Chiaravalli J, et al. NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain. EMBO J 2009; 28:2885–2895.

Hadian K, Griesbach RA, Dornauer S, et al. NEMO interaction with linear and K63 ubiquitin chains contributes to NF-{kappa}B activation. J Biol Chem 2011; 286:26107–26117.

Boname JM, Thomas M, Stagg HR, Xu P, Peng J, Lehner PJ . Efficient internalization of MHC I requires lysine-11 and lysine-63 mixed linkage polyubiquitin chains. Traffic 2010; 11:210–220.

Goto E, Yamanaka Y, Ishikawa A, et al. Contribution of Lysine 11-linked ubiquitination to MIR2-mediated major histocompatibility complex Class I internalization. J Biol Chem 2010; 285:35311–35319.

Kim HT, Kim KP, Lledias F, et al. Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. J Biol Chem 2007; 282:17375–17386.

Kim HT, Kim KP, Uchiki T, Gygi SP, Goldberg AL . S5a promotes protein degradation by blocking synthesis of nondegradable forked ubiquitin chains. EMBO J 2009; 28:1867–1877.

Xu P, Peng J . Characterization of polyubiquitin chain structure by middle-down mass spectrometry. Anal Chem 2008; 80:3438–3444.

Valkevich EM, Sanchez NA, Ge Y, Strieter ER . Middle-down mass spectrometry enables characterization of branched ubiquitin chains. Biochemistry 2014; 53:4979–4989.

Finley D . Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 2009; 78:477–513.

Pierce NW, Kleiger G, Shan S-O, Deshaies RJ . Detection of sequential polyubiquitylation on a millisecond timescale. Nature 2009; 462:615–619.

Ye Y, Blaser G, Horrocks MH, et al. Ubiquitin chain conformation regulates recognition and activity of interacting proteins. Nature 2012; 492:266–270.

Schaefer JB, Morgan DO . Protein-linked ubiquitin chain structure restricts activity of deubiquitinating enzymes. J Biol Chem 2011; 286:45186–45196.

Streich FC, Lima CD . Structural and functional insights to ubiquitin-like protein conjugation. Annu Rev Biophys 2014; 43:357–379.

Flotho A, Melchior F . Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem 2013; 82:357–385.

Sriramachandran AM, Dohmen RJ . SUMO-targeted ubiquitin ligases. Biochim Biophys Acta 2014; 1843:75–85.

Singh RK, Zerath S, Kleifeld O, Scheffner M, Glickman MH, Fushman D . Recognition and cleavage of related to ubiquitin 1 (Rub1) and Rub1-ubiquitin chains by components of the ubiquitin-proteasome system. Mol Cell Proteomics 2012; 11:1595–1611.

Hjerpe R, Thomas Y, Chen J, et al. Changes in the ratio of free NEDD8 to ubiquitin triggers NEDDylation by ubiquitin enzymes. Biochem J 2012; 441:927–936.

Olsen JV, Mann M . Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol Cell Proteomics 2013; 12:3444–3452.

Neumann H, Peak-Chew SY, Chin JW . Genetically encoding N(epsilon)-acetyllysine in recombinant proteins. Nat Chem Biol 2008; 4:232–234.

Wickliffe KE, Lorenz S, Wemmer DE, Kuriyan J, Rape M . The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2. Cell 2011; 144:769–781.

Lorenz S, Bhattacharyya M, Feiler C, Rape M, Kuriyan J . Crystal structure of a Ube2S-ubiquitin conjugate. PLoS One 2016; 11:e0147550.

Youle RJ, Narendra DP . Mechanisms of mitophagy. Nat Rev Mol Cell Biol 2011; 12:9–14.

Sugiura A, McLelland G-L, Fon EA, McBride HM . A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J 2014; 33:2142–2156.

Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ . Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 2010; 191:933–942.

Yamano K, Youle RJ . PINK1 is degraded through the N-end rule pathway. Autophagy 2013; 9:1758–1769.

Narendra DP, Jin SM, Tanaka A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 2010; 8:e1000298.

Narendra D, Tanaka A, Suen D-F, Youle RJ . Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 2008; 183:795–803.

Chen Y, Dorn GW . PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 2013; 340:471–475.

Wang X, Winter D, Ashrafi G, et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 2011; 147:893–906.

Kondapalli C, Kazlauskaite A, Zhang N, et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol 2012; 2:120080.

Shiba-Fukushima K, Imai Y, Yoshida S, et al. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep 2012; 2:1002.

Kane LA, Lazarou M, Fogel AI, et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 2014; 205:143–153.

Koyano F, Okatsu K, Kosako H, et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 2014; 510:162–166.

Kazlauskaite A, Kondapalli C, Gourlay R, et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J 2014; 460:127–139.

Shiba-Fukushima K, Arano T, Matsumoto G, et al. Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering. PLoS Genet 2014; 10:e1004861.

Okatsu K, Koyano F, Kimura M, et al. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J Cell Biol 2015; 209:111–128.

Lazarou M, Sliter DA, Kane LA, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 2015; 524:309–314.

Heo J-M, Ordureau A, Paulo JA, Rinehart J, Harper JW . The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol Cell 2015; 60:7–20.

Woodroof HI, Pogson JH, Begley M, et al. Discovery of catalytically active orthologues of the Parkinson's disease kinase PINK1: analysis of substrate specificity and impact of mutations. Open Biology 2011; 1:110012.

Perica T, Chothia C . Ubiquitin ― molecular mechanisms for recognition of different structures. Curr Opin Struct Biol 2010; 20:367–376.

Lange OF, Lakomek N-A, Farès C, et al. Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 2008; 320:1471–1475.

Steger M, Tonelli F, Ito G, et al. Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases. eLife 2016; 5:e12813.

Müller-Rischart AK, Pilsl A, Beaudette P, et al. The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO. Mol Cell 2013; 49:908–921.

Wenzel DM, Lissounov A, Brzovic PS, Klevit RE . UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 2011; 474:105–108.

Chaugule VK, Burchell L, Barber KR, et al. Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J 2011; 30:2853–2867.

Trempe J-F, Sauvé V, Grenier K, et al. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 2013; 340:1451–1455.

Wauer T, Komander D . Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J 2013; 32:2099–2112.

Riley BE, Lougheed JC, Callaway K, et al. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat Commun 2013; 4:1982.

Wauer T, Simicek M, Schubert A, Komander D . Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 2015; 524:370–374.

Sauvé V, Lilov A, Seirafi M, et al. A Ubl/ubiquitin switch in the activation of Parkin. EMBO J 2015; 34:2492–2505.

Kumar A, Aguirre JD, Condos TE, et al. Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis. EMBO J 2015; 34:2506–2521.

Kazlauskaite A, Martinez-Torres RJ, Wilkie S, et al. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. EMBO Rep 2015; 16:939–954.

Duda DM, Olszewski JL, Schuermann JP, et al. Structure of HHARI, a RING-IBR-RING ubiquitin ligase: Autoinhibition of an ariadne-family E3 and insights into ligation mechanism. Structure 2013; 21:1030–1041.

Kelsall IR, Duda DM, Olszewski JL, et al. TRIAD1 and HHARI bind to and are activated by distinct neddylated Cullin-RING ligase complexes. EMBO J 2013; 32:2848–2860.

Zaffagnini G, Martens S . Mechanisms of selective autophagy. J Mol Biol 2016; pii:S0022-2836(16)00109–1.

Wong YC, Holzbaur ELF . Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc Natl Acad Sci USA 2014; 111:E4439–E4448.

Narendra D, Kane LA, Hauser DN, Fearnley IM, Youle RJ . p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 2010; 6:1090–1106.

Okatsu K, Saisho K, Shimanuki M, et al. p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Genes Cells 2010; 15:887–900.

Zhong Z, Umemura A, Sanchez-Lopez E, et al. NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell 2016; 164:896–910.

Wild P, Farhan H, McEwan DG, et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 2011; 333:228–233.

Randow F, Youle RJ . Self and nonself: how autophagy targets mitochondria and bacteria. Cell Host Microbe 2014; 15:403–411.

Wang Y, Serricchio M, Jauregui M, et al. Deubiquitinating enzymes regulate PARK2-mediated mitophagy. Autophagy 2015; 11:595–606.

Cornelissen T, Haddad D, Wauters F, et al. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum Mol Genet 2014; 23:5227–5242.

Durcan TM, Kontogiannea M, Bedard N, Wing SS, Fon EA . Ataxin-3 deubiquitination is coupled to Parkin ubiquitination via E2 ubiquitin-conjugating enzyme. J Biol Chem 2012; 287:531–541.