Ubiquitin modifications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Goldknopf IL, French MF, Musso R, Busch H . Presence of protein A24 in rat liver nucleosomes. Proc Natl Acad Sci USA 1977; 74:5492–5495.
Verdin E, Ott M . 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol 2015; 16:258–264.
Clague MJ, Heride C, Urbé S . The demographics of the ubiquitin system. Trends Cell Biol 2015; 25:417–426.
Schulman BA, Harper JW . Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signaling pathways. Nat Rev Mol Cell Biol 2009; 10:319–331.
Ye Y, Rape M . Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 2009; 10:755–764.
Rotin D, Kumar S . Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 2009; 10:398–409.
Husnjak K, Dikic I . Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem 2012; 81:291–322.
Komander D, Clague MJ, Urbé S . Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 2009; 10:550–563.
Clague MJ, Barsukov I, Coulson JM, Liu H, Rigden DJ, Urbé S . Deubiquitylases from genes to organism. Physiol Rev 2013; 93:1289–1315.
Peng J, Schwartz D, Elias JE, et al. A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 2003; 21:921–926.
Kim W, Bennett EJ, Huttlin EL, et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 2011; 44:325–340.
Wagner SA, Beli P, Weinert BT, et al. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 2011; 10:M111.013284.
Kaiser SE, Riley BE, Shaler TA, et al. Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools. Nat Methods 2011; 8:691–696.
Xu P, Duong DM, Seyfried NT, et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 2009; 137:133–145.
Dammer EB, Na CH, Xu P, et al. Polyubiquitin linkage profiles in three models of proteolytic stress suggest the etiology of Alzheimer disease. J Biol Chem 2011; 286:10457–10465.
Ziv I, Matiuhin Y, Kirkpatrick DS, et al. A perturbed ubiquitin landscape distinguishes between ubiquitin in trafficking and in proteolysis. Mol Cell Proteomics 2011; 10:M111.009753.
Chen ZJ, Sun LJ . Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 2009; 33:275–286.
Kulathu Y, Komander D . Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol 2012; 13:508–523.
Galisson F, Mahrouche L, Courcelles M, et al. A novel proteomics approach to identify SUMOylated proteins and their modification sites in human cells. Mol Cell Proteomics 2011; 10:M110.004796–M110.004796.
Lamoliatte F, Bonneil E, Durette C, et al. Targeted identification of SUMOylation sites in human proteins using affinity enrichment and paralog-specific reporter ions. Mol Cell Proteomics 2013; 12:2536–2550.
Hendriks IA, D'Souza RCJ, Yang B, Verlaan-de Vries M, Mann M, Vertegaal ACO . Uncovering global SUMOylation signaling networks in a site-specific manner. Nat Struct Mol Biol 2014; 21:927–936.
Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009; 325:834–840.
Lundby A, Lage K, Weinert BT, et al. Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. Cell Rep 2012; 2:419–431.
Ohtake F, Saeki Y, Sakamoto K, et al. Ubiquitin acetylation inhibits polyubiquitin chain elongation. EMBO Rep 2015; 16:192–201.
Weinert BT, Schölz C, Wagner SA, et al. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep 2013; 4:842–851.
Lee HJ, Na K, Kwon MS, Kim H, Kim KS, Paik YK . Quantitative analysis of phosphopeptides in search of the disease biomarker from the hepatocellular carcinoma specimen. Proteomics 2009; 9:3395–3408.
Zhou H, Di Palma S, Preisinger C, et al. Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 2013; 12:260–271.
Lundby A, Secher A, Lage K, et al. Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 2012; 3:876.
Swaney DL, Beltrao P, Starita L, et al. Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 2013; 10:676–682.
Rikova K, Guo A, Zeng Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 2007; 131:1190–1203.
Olsen JV, Blagoev B, Gnad F, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 2006; 127:635–648.
Xia Z-P, Sun L, Chen X, et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 2009; 461:114–119.
Rajsbaum R, García-Sastre A . Virology. Unanchored ubiquitin in virus uncoating. Science 2014; 346:427–428.
Fiesel FC, Ando M, Hudec R, et al. (Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation. EMBO Rep 2015; 16:1114–11130.
Lai YC, Kondapalli C, Lehneck R, et al. Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1. EMBO J 2015; 34:2840–2861.
Wauer T, Swatek KN, Wagstaff JL, et al. Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J 2015; 34:307–325.
Swaney DL, Rodríguez-Mias RA, Villén J . Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover. EMBO Rep 2015; 16:1131–1144.
Hospenthal MK, Mevissen TET, Komander D . Deubiquitinase-based analysis of ubiquitin chain architecture using Ubiquitin Chain Restriction (UbiCRest). Nat Protoc 2015; 10:349–361.
Sims JJ, Scavone F, Cooper EM, et al. Polyubiquitin-sensor proteins reveal localization and linkage-type dependence of cellular ubiquitin signaling. Nat Methods 2012; 9:303–309.
van Wijk SJL, Fiskin E, Putyrski M, et al. Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells. Mol Cell 2012; 47:797–809.
Newton K, Matsumoto ML, Wertz IE, et al. Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 2008; 134:668–678.
Matsumoto ML, Wickliffe KE, Dong KC, et al. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol Cell 2010; 39:477–484.
Matsumoto ML, Dong KC, Yu C, et al. Engineering and structural characterization of a linear polyubiquitin-specific antibody. J Mol Biol 2012; 418:134–144.
Kirisako T, Kamei K, Murata S, et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J 2006; 25:4877–4887.
Komander D, Reyes-Turcu F, Licchesi JDF, Odenwaelder P, Wilkinson KD, Barford D . Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep 2009; 10:466–473.
Rahighi S, Ikeda F, Kawasaki M, et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 2009; 136:1098–1109.
Tokunaga F, Sakata S-I, Saeki Y, et al. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol 2009; 11:123–132.
Haas TL, Emmerich CH, Gerlach B, et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol Cell 2009; 36:831–844.
Gerlach B, Cordier SM, Schmukle AC, et al. Linear ubiquitination prevents inflammation and regulates immune signaling. Nature 2011; 471:591–596.
Smit JJ, Monteferrario D, Noordermeer SM, van Dijk WJ, van der Reijden BA, Sixma TK . The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension. EMBO J 2012; 31:3833–3844.
Stieglitz B, Morris-Davies AC, Koliopoulos MG, Christodoulou E, Rittinger K . LUBAC synthesizes linear ubiquitin chains via a thioester intermediate. EMBO Rep 2012; 13:840–846.
Stieglitz B, Rana RR, Koliopoulos MG, et al. Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP. Nature 2013; 503:422–426.
Lechtenberg BC, Rajput A, Sanishvili R, et al. Structure of a HOIP/E2∼ubiquitin complex reveals RBR E3 ligase mechanism and regulation. Nature 2016; 529:546–550.
Sato Y, Fujita H, Yoshikawa A, et al. Specific recognition of linear ubiquitin chains by the Npl4 zinc finger (NZF) domain of the HOIL-1L subunit of the linear ubiquitin chain assembly complex. Proc Natl Acad Sci USA 2011; 108:20520–20525.
Tokunaga F, Nishimasu H, Ishitani R, et al. Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-κB regulation. EMBO J 2012; 31:3856–3870.
Verhelst K, Carpentier I, Kreike M, et al. A20 inhibits LUBAC-mediated NF-κB activation by binding linear polyubiquitin chains via its zinc finger 7. EMBO J 2012; 31:3845–3855.
Ikeda F, Deribe YL, Skånland SS, et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 2011; 471:637–641.
Tokunaga F, Nakagawa T, Nakahara M, et al. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature 2011; 471:633–636.
Peltzer N, Rieser E, Taraborrelli L, et al. HOIP deficiency causes embryonic lethality by aberrant TNFR1-mediated endothelial cell death. Cell Rep 2014; 9:153–165.
Kumari S, Redouane Y, López-Mosqueda J, et al. Sharpin prevents skin inflammation by inhibiting TNFR1-induced keratinocyte apoptosis. 2014; 3:e03422.
Sasaki Y, Sano S, Nakahara M, et al. Defective immune responses in mice lacking LUBAC-mediated linear ubiquitination in B cells. EMBO J 2013; 32:2463–2476.
MacDuff DA, Reese TA, Kimmey JM, et al. Phenotypic complementation of genetic immunodeficiency by chronic herpesvirus infection. eLife 2015; 4:e04494.
Park Y, Jin H-S, Lopez J, et al. SHARPIN controls regulatory T cells by negatively modulating the T cell antigen receptor complex. Nat Immunol 2016; 17:286–296.
Boisson B, Laplantine E, Dobbs K, et al. Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J Exp Med 2015; 212:939–951.
Boisson B, Laplantine E, Prando C, et al. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat Immunol 2012; 13:1178–1186.
Walczak H, Iwai K, Dikic I . Generation and physiological roles of linear ubiquitin chains. BMC Biol 2012; 10:23.
Iwai K, Fujita H, Sasaki Y . Linear ubiquitin chains: NF-κB signaling, cell death and beyond. Nat Rev Mol Cell Biol 2014; 15:503–508.
Sato Y, Goto E, Shibata Y, et al. Structures of CYLD USP with Met1- or Lys63-linked diubiquitin reveal mechanisms for dual specificity. Nat Struct Mol Biol 2015; 22:222–229.
Keusekotten K, Elliott PR, Glockner L, et al. OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell 2013; 153:1312–1326.
Rivkin E, Almeida SM, Ceccarelli DF, et al. The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature 2013; 498:318–324.
Fiil BK, Damgaard RB, Wagner SA, et al. OTULIN restricts Met1-linked ubiquitination to control innate immune signaling. Mol Cell 2013; 50:818–830.
Elliott PR, Nielsen SV, Marco-Casanova P, et al. Molecular basis and regulation of OTULIN-LUBAC interaction. Mol Cell 2014; 54:335–348.
Schaeffer V, Akutsu M, Olma MH, Gomes LC, Kawasaki M, Dikic I . Binding of OTULIN to the PUB domain of HOIP controls NF-κB signaling. Mol Cell 2014; 54:349–361.
Takiuchi T, Nakagawa T, Tamiya H, et al. Suppression of LUBAC-mediated linear ubiquitination by a specific interaction between LUBAC and the deubiquitinases CYLD and OTULIN. Genes Cells 2014; 19:254–272.
Draber P, Kupka S, Reichert M, et al. LUBAC-recruited CYLD and A20 regulate gene activation and cell death by exerting opposing effects on linear ubiquitin in signaling complexes. Cell Rep 2015; 13:2258–2272.
Mevissen TET, Hospenthal MK, Geurink PP, et al. OTU Deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell 2013; 154:169–184.
De A, Dainichi T, Rathinam CV, Ghosh S . The deubiquitinase activity of A20 is dispensable for NF-κB signaling. EMBO Rep 2014; 15:775–783.
Wertz IE, Newton K, Seshasayee D, et al. Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation. Nature 2015; 528:370–375.
Elia AEH, Boardman AP, Wang DC, et al. Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response. Mol Cell 2015; 59:867–881.
Wu-Baer F, Lagrazon K, Yuan W, Baer R . The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin. J Biol Chem 2003; 278:34743–34746.
Morris JR, Solomon E . BRCA1 : BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair. Hum Mol Genet 2004; 13:807–817.
Ordureau A, Sarraf SA, Duda DM, et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol Cell 2014; 56:360–375.
Durcan TM, Tang MY, Pérusse JR, et al. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin. EMBO J 2014; 33:2473–2491.
Cunningham CN, Baughman JM, Phu L, et al. USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat Cell Biol 2015; 17:160–169.
Ordureau A, Heo J-M, Duda DM, et al. Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proc Natl Acad Sci USA 2015; 112:6637–6642.
Bingol B, Tea JS, Phu L, et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 2014; 510:370–375.
Liang J-R, Martinez A, Lane JD, Mayor U, Clague MJ, Urbé S . USP30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death. EMBO Rep 2015; 16:618–627.
Faesen AC, Luna-Vargas MPA, Geurink PP, et al. The differential modulation of USP activity by internal regulatory domains, interactors and eight ubiquitin chain types. Chem Biol 2011; 18:1550–1561.
Manzanillo PS, Ayres JS, Watson RO, et al. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 2013; 501:512–516.
Hospenthal MK, Freund SMV, Komander D . Assembly, analysis and architecture of atypical ubiquitin chains. Nat Struct Mol Biol 2013; 20:555–565.
Lin DY-W, Diao J, Zhou D, Chen J . Biochemical and structural studies of a HECT-like ubiquitin ligase from Escherichia coli O157:H7. J Biol Chem 2011; 286:441–449.
Bremm A, Komander D . Emerging roles for Lys11-linked polyubiquitin in cellular regulation. Trends Biochem Sci 2011; 36:355–363.
Wickliffe KE, Williamson A, Meyer H-J, Kelly A, Rape M . K11-linked ubiquitin chains as novel regulators of cell division. Trends Cell Biol 2011; 21:656–663.
Grice GL, Lobb IT, Weekes MP, Gygi SP, Antrobus R, Nathan JA . The proteasome distinguishes between heterotypic and homotypic lysine-11-linked polyubiquitin chains. Cell Rep 2015; 12:545–553.
Meyer H-J, Rape M . Enhanced protein degradation by branched ubiquitin chains. Cell 2014; 157:910–921.
Min M, Mevissen TET, De Luca M, Komander D, Lindon C . Efficient APC/C substrate degradation in cells undergoing mitotic exit depends on K11 ubiquitin linkages. Mol Biol Cell 2015; 26:4325–4332.
Hu H, Brittain GC, Chang J-H, et al. OTUD7B controls non-canonical NF-κB activation through deubiquitination of TRAF3. Nature 2013; 494:371–374.
Hu H, Wang H, Xiao Y, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med 2016; 213:399–414.
Pareja F, Ferraro DA, Rubin C, et al. Deubiquitination of EGFR by Cezanne-1 contributes to cancer progression. Oncogene 2012; 31:4599–4608.
Bremm A, Moniz S, Mader J, Rocha S, Komander D . Cezanne (OTUD7B) regulates HIF-1α homeostasis in a proteasome-independent manner. EMBO Rep 2014; 15:1268–1277.
Moniz S, Bandarra D, Biddlestone J, et al. Cezanne regulates E2F1-dependent HIF2α expression. J Cell Sci 2015; 128:3082–3093.
Geisler S, Holmström KM, Skujat D, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 2010; 12:119–131.
Gatti M, Pinato S, Maiolica A, et al. RNF168 Promotes noncanonical K27 ubiquitination to signal DNA damage. Cell Rep 2015; 10:226–238.
Liu Z, Chen P, Gao H, et al. Ubiquitylation of autophagy receptor Optineurin by HACE1 activates selective autophagy for tumor suppression. Cancer Cell 2014; 26:106–120.
Palicharla VR, Maddika S . HACE1 mediated K27 ubiquitin linkage leads to YB-1 protein secretion. Cell Signal 2015; 27:2355–2362.
You J, Pickart CM . A HECT domain E3 enzyme assembles novel polyubiquitin chains. J Biol Chem 2001; 276:19871–19878.
Michel MA, Elliott PR, Swatek KN, et al. Assembly and specific recognition of k29- and k33-linked polyubiquitin. Mol Cell 2015; 58:95–109.
Kristariyanto YA, Abdul Rehman SA, Campbell DG, et al. K29-selective ubiquitin binding domain reveals structural basis of specificity and heterotypic nature of k29 polyubiquitin. Mol Cell 2015; 58:83–94.
Besche HC, Sha Z, Kukushkin NV, et al. Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates. EMBO J 2014; 33:1159–1176.
Crosas B, Hanna J, Kirkpatrick DS, et al. Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 2006; 127:1401–1413.
Virdee S, Ye Y, Nguyen DP, Komander D, Chin JW . Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase. Nat Chem Biol 2010; 6:750–757.
Licchesi JDF, Mieszczanek J, Mevissen TET, et al. An ankyrin-repeat ubiquitin-binding domain determines TRABID's specificity for atypical ubiquitin chains. Nat Struct Mol Biol 2012; 19:62–71.
Tran H, Hamada F, Schwarz-Romond T, Bienz M . Trabid, a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains. Genes Dev 2008; 22:528–542.
Jin J, Xie X, Xiao Y, et al. Epigenetic regulation of the expression of Il12 and Il23 and autoimmune inflammation by the deubiquitinase Trabid. Nat Immunol 2016; 17:259–268.
Kristariyanto YA, Choi S-Y, Rehman SAA, et al. Assembly and structure of Lys33-linked polyubiquitin reveals distinct conformations. Biochem J 2015; 467:345–352.
Kim JB, Kim SY, Kim BM, et al. Identification of a novel anti-apoptotic E3 ubiquitin ligase that ubiquitinates antagonists of inhibitor of apoptosis proteins SMAC, HtrA2, and ARTS. J Biol Chem 2013; 288:12014–12021.
Yuan W-C, Lee Y-R, Lin S-Y, et al. K33-linked polyubiquitination of Coronin 7 by Cul3-KLHL20 ubiquitin E3 ligase regulates protein trafficking. Mol Cell 2014; 54:586–600.
Thrower JS, Hoffman L, Rechsteiner M, Pickart CM . Recognition of the polyubiquitin proteolytic signal. EMBO J 2000; 19:94–102.
Sakata E, Bohn S, Mihalache O, et al. Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy. Proc Natl Acad Sci USA 2012; 109:1479–1484.
Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A . Complete subunit architecture of the proteasome regulatory particle. Nature 2012; 482:186–191.
Matyskiela ME, Lander GC, Martin A . Conformational switching of the 26S proteasome enables substrate degradation. Nat Struct Mol Biol 2013; 20:781–788.
Kirkpatrick DS, Hathaway NA, Hanna J, et al. Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat Cell Biol 2006; 8:700–710.
Flick K, Ouni I, Wohlschlegel JA, et al. Proteolysis-independent regulation of the transcription factor Met4 by a single Lys 48-linked ubiquitin chain. Nat Cell Biol 2004; 6:634–641.
Flick K, Raasi S, Zhang H, Yen JL, Kaiser P . A ubiquitin-interacting motif protects polyubiquitinated Met4 from degradation by the 26S proteasome. Nat Cell Biol 2006; 8:509–515.
Lu Y, Lee B-H, King RW, Finley D, Kirschner MW . Substrate degradation by the proteasome: a single-molecule kinetic analysis. Science 2015; 348:1250834.
Kanayama A, Seth RB, Sun L, et al. TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell 2004; 15:535–548.
Kulathu Y, Akutsu M, Bremm A, Hofmann K, Komander D . Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain. Nat Struct Mol Biol 2009; 16:1328–1330.
Sato Y, Yoshikawa A, Yamashita M, Yamagata A, Fukai S . Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by NZF domains of TAB2 and TAB3. EMBO J 2009; 28:3903–3909.
Ivins FJ, Montgomery MG, Smith SJM, Morris-Davies AC, Taylor IA, Rittinger K . NEMO oligomerization and its ubiquitin-binding properties. Biochem J 2009; 421:243–251.
Emmerich CH, Ordureau A, Strickson S, et al. Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proc Natl Acad Sci USA 2013; 110:15247–15252.
Laplantine E, Fontan E, Chiaravalli J, et al. NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain. EMBO J 2009; 28:2885–2895.
Hadian K, Griesbach RA, Dornauer S, et al. NEMO interaction with linear and K63 ubiquitin chains contributes to NF-{kappa}B activation. J Biol Chem 2011; 286:26107–26117.
Boname JM, Thomas M, Stagg HR, Xu P, Peng J, Lehner PJ . Efficient internalization of MHC I requires lysine-11 and lysine-63 mixed linkage polyubiquitin chains. Traffic 2010; 11:210–220.
Goto E, Yamanaka Y, Ishikawa A, et al. Contribution of Lysine 11-linked ubiquitination to MIR2-mediated major histocompatibility complex Class I internalization. J Biol Chem 2010; 285:35311–35319.
Kim HT, Kim KP, Lledias F, et al. Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. J Biol Chem 2007; 282:17375–17386.
Kim HT, Kim KP, Uchiki T, Gygi SP, Goldberg AL . S5a promotes protein degradation by blocking synthesis of nondegradable forked ubiquitin chains. EMBO J 2009; 28:1867–1877.
Xu P, Peng J . Characterization of polyubiquitin chain structure by middle-down mass spectrometry. Anal Chem 2008; 80:3438–3444.
Valkevich EM, Sanchez NA, Ge Y, Strieter ER . Middle-down mass spectrometry enables characterization of branched ubiquitin chains. Biochemistry 2014; 53:4979–4989.
Finley D . Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 2009; 78:477–513.
Pierce NW, Kleiger G, Shan S-O, Deshaies RJ . Detection of sequential polyubiquitylation on a millisecond timescale. Nature 2009; 462:615–619.
Ye Y, Blaser G, Horrocks MH, et al. Ubiquitin chain conformation regulates recognition and activity of interacting proteins. Nature 2012; 492:266–270.
Schaefer JB, Morgan DO . Protein-linked ubiquitin chain structure restricts activity of deubiquitinating enzymes. J Biol Chem 2011; 286:45186–45196.
Streich FC, Lima CD . Structural and functional insights to ubiquitin-like protein conjugation. Annu Rev Biophys 2014; 43:357–379.
Flotho A, Melchior F . Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem 2013; 82:357–385.
Sriramachandran AM, Dohmen RJ . SUMO-targeted ubiquitin ligases. Biochim Biophys Acta 2014; 1843:75–85.
Singh RK, Zerath S, Kleifeld O, Scheffner M, Glickman MH, Fushman D . Recognition and cleavage of related to ubiquitin 1 (Rub1) and Rub1-ubiquitin chains by components of the ubiquitin-proteasome system. Mol Cell Proteomics 2012; 11:1595–1611.
Hjerpe R, Thomas Y, Chen J, et al. Changes in the ratio of free NEDD8 to ubiquitin triggers NEDDylation by ubiquitin enzymes. Biochem J 2012; 441:927–936.
Olsen JV, Mann M . Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol Cell Proteomics 2013; 12:3444–3452.
Neumann H, Peak-Chew SY, Chin JW . Genetically encoding N(epsilon)-acetyllysine in recombinant proteins. Nat Chem Biol 2008; 4:232–234.
Wickliffe KE, Lorenz S, Wemmer DE, Kuriyan J, Rape M . The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2. Cell 2011; 144:769–781.
Lorenz S, Bhattacharyya M, Feiler C, Rape M, Kuriyan J . Crystal structure of a Ube2S-ubiquitin conjugate. PLoS One 2016; 11:e0147550.
Sugiura A, McLelland G-L, Fon EA, McBride HM . A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J 2014; 33:2142–2156.
Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ . Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 2010; 191:933–942.
Narendra DP, Jin SM, Tanaka A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 2010; 8:e1000298.
Narendra D, Tanaka A, Suen D-F, Youle RJ . Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 2008; 183:795–803.
Chen Y, Dorn GW . PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 2013; 340:471–475.
Wang X, Winter D, Ashrafi G, et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 2011; 147:893–906.
Kondapalli C, Kazlauskaite A, Zhang N, et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol 2012; 2:120080.
Shiba-Fukushima K, Imai Y, Yoshida S, et al. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep 2012; 2:1002.
Kane LA, Lazarou M, Fogel AI, et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 2014; 205:143–153.
Koyano F, Okatsu K, Kosako H, et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 2014; 510:162–166.
Kazlauskaite A, Kondapalli C, Gourlay R, et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J 2014; 460:127–139.
Shiba-Fukushima K, Arano T, Matsumoto G, et al. Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering. PLoS Genet 2014; 10:e1004861.
Okatsu K, Koyano F, Kimura M, et al. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J Cell Biol 2015; 209:111–128.
Lazarou M, Sliter DA, Kane LA, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 2015; 524:309–314.
Heo J-M, Ordureau A, Paulo JA, Rinehart J, Harper JW . The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol Cell 2015; 60:7–20.
Woodroof HI, Pogson JH, Begley M, et al. Discovery of catalytically active orthologues of the Parkinson's disease kinase PINK1: analysis of substrate specificity and impact of mutations. Open Biology 2011; 1:110012.
Perica T, Chothia C . Ubiquitin ― molecular mechanisms for recognition of different structures. Curr Opin Struct Biol 2010; 20:367–376.
Lange OF, Lakomek N-A, Farès C, et al. Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 2008; 320:1471–1475.
Steger M, Tonelli F, Ito G, et al. Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases. eLife 2016; 5:e12813.
Müller-Rischart AK, Pilsl A, Beaudette P, et al. The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO. Mol Cell 2013; 49:908–921.
Wenzel DM, Lissounov A, Brzovic PS, Klevit RE . UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 2011; 474:105–108.
Chaugule VK, Burchell L, Barber KR, et al. Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J 2011; 30:2853–2867.
Trempe J-F, Sauvé V, Grenier K, et al. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 2013; 340:1451–1455.
Wauer T, Komander D . Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J 2013; 32:2099–2112.
Riley BE, Lougheed JC, Callaway K, et al. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat Commun 2013; 4:1982.
Wauer T, Simicek M, Schubert A, Komander D . Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 2015; 524:370–374.
Sauvé V, Lilov A, Seirafi M, et al. A Ubl/ubiquitin switch in the activation of Parkin. EMBO J 2015; 34:2492–2505.
Kumar A, Aguirre JD, Condos TE, et al. Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis. EMBO J 2015; 34:2506–2521.
Kazlauskaite A, Martinez-Torres RJ, Wilkie S, et al. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. EMBO Rep 2015; 16:939–954.
Duda DM, Olszewski JL, Schuermann JP, et al. Structure of HHARI, a RING-IBR-RING ubiquitin ligase: Autoinhibition of an ariadne-family E3 and insights into ligation mechanism. Structure 2013; 21:1030–1041.
Kelsall IR, Duda DM, Olszewski JL, et al. TRIAD1 and HHARI bind to and are activated by distinct neddylated Cullin-RING ligase complexes. EMBO J 2013; 32:2848–2860.
Zaffagnini G, Martens S . Mechanisms of selective autophagy. J Mol Biol 2016; pii:S0022-2836(16)00109–1.
Wong YC, Holzbaur ELF . Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc Natl Acad Sci USA 2014; 111:E4439–E4448.
Narendra D, Kane LA, Hauser DN, Fearnley IM, Youle RJ . p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 2010; 6:1090–1106.
Okatsu K, Saisho K, Shimanuki M, et al. p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Genes Cells 2010; 15:887–900.
Zhong Z, Umemura A, Sanchez-Lopez E, et al. NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell 2016; 164:896–910.
Wild P, Farhan H, McEwan DG, et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 2011; 333:228–233.
Randow F, Youle RJ . Self and nonself: how autophagy targets mitochondria and bacteria. Cell Host Microbe 2014; 15:403–411.
Wang Y, Serricchio M, Jauregui M, et al. Deubiquitinating enzymes regulate PARK2-mediated mitophagy. Autophagy 2015; 11:595–606.
Cornelissen T, Haddad D, Wauters F, et al. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum Mol Genet 2014; 23:5227–5242.