Effect of Congenital Anomalies of the Papillary Muscles on Mitral Valve Function
Tóm tắt
Parachute mitral valves (PMVs) and parachute-like asymmetric mitral valves (PLAMVs) are associated with congenital anomalies of the papillary muscles. Current imaging modalities cannot provide detailed biomechanical information. This study describes computational evaluation techniques based on three-dimensional (3D) echocardiographic data to determine the biomechanical and physiologic characteristics of PMVs and PLAMVs. The closing and opening mechanics of a normal mitral valve (MV), two types of PLAMV with different degrees of asymmetry, and a true PMV were investigated. MV geometric data in a patient with a normal MV was acquired from 3D echocardiography. The pathologic MVs were modeled by altering the configuration of the papillary muscles in the normal MV model. Dynamic finite element simulations of the normal MV, PLAMVs, and true PMV were performed. There was a strong correlation between the reduction of mitral orifice size and the degree of asymmetry of the papillary muscle location. The PLAMVs demonstrated decreased leaflet coaptation and tenting height. The true PMV revealed severely wrinkled leaflet deformation and narrowed interchordal spaces, leading to uneven leaflet coaptation. There were considerable decreases in leaflet coaptation and abnormal leaflet deformation corresponding to the anomalous location of the papillary muscle tips. This computational MV evaluation strategy provides a powerful tool to better understand biomechanical and pathophysiologic MV abnormalities.
Tài liệu tham khảo
Marino, B. S., Kruge, L. E, Cho, C. J., Tomlinson, R. S., Shera, D., Weinberg, P. M., Gaynor, & J. W., Rychik, J. (2009). Parachute mitral valve: morphologic descriptors, associated lesions, and outcomes after biventricular repair. The Journal of Thoracic and Cardiovascular Surgery, 137, 385–393.e4.
Oosthoek, P. W., Wenink, A. C., Macedo, A. J., & Gittenberger-de Groot, A. C. (1997). The parachute-like asymmetric mitral valve and its two papillary muscles. Journal of Thoracic and Cardiovascular Surgery, 114, 9–15.
Oosthoek, P. W., Wenink, A. C., Wisse, L. J., & Gittenberger-de Groot, A. C. (1998). Development of the papillary muscles of the mitral valve: morphogenetic background of parachute-like asymmetric mitral valves and other mitral valve anomalies. Journal of Thoracic and Cardiovascular Surgery, 116, 36–46.
Hakim, F. A., Kendall, C. B., Alharthi, M., Mancina, J. C., Tajik, J. A., & Mookadam, F. (2010). Parachute mitral valve in adults-a systematic overview. Echocardiography, 27, 581–586.
Sacks, M. S. (2001). The biomechanical effects of fatigue on the porcine bioprosthetic heart valve. Journal of Long-Term Effects of Medical Implants, 11, 231–247.
Sacks, M. S., & Schoen, F. J. (2002). Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. Journal of Biomedical Materials Research, 62, 359–371.
Xu, C., Jassar, A. S., Nathan, D. P., Eperjesi, T. J., Brinster, C. J., Levack, M. M., et al. (2012). Augmented mitral valve leaflet area decreases leaflet stress: a finite element simulation. Annals of Thoracic Surgery, 93, 1141–1145.
Chandran, K. B. (2010). Role of computational simulations in heart valve dynamics and design of valvular prostheses. Cardiovascular Engineering and Technology, 1, 18–38.
Kim, H., Chandran, K. B., Sacks, M. S., & Lu, J. (2007). An experimentally derived stress resultant shell model for heart valve dynamic simulations. Annals of Biomedical Engineering, 35, 30–44.
Kim, H., Lu, J., Sacks, M. S., & Chandran, K. B. (2008). Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model. Annals of Biomedical Engineering, 36, 262–275.
Kunzelman, K. S., Quick, D. W., & Cochran, R. P. (1998). Altered collagen concentration in mitral valve leaflets: biochemical and finite element analysis. Annals of Thoracic Surgery, 66, S198–S205.
Prot, V., Skallerud, B., Sommer, G., & Holzapfel, G. A. (2010). On modelling and analysis of healthy and pathological human mitral valves: two case studies. Journal of the Mechanical Behavior of Biomedical Materials, 3, 167–177.
Rim, Y., Laing, S. T., Kee, P., McPherson, D. D., & Kim, H. (2013). Evaluation of mitral valve dynamics. JACC Cardiovascular Imaging, 6, 263–268.
Rim, Y., McPherson, D. D., Chandran, K. B., & Kim, H. (2013). The effect of patient-specific annular motion on dynamic simulation of mitral valve function. Journal of Biomechanics, 46, 1104–1112.
Votta, E., Maisano, F., Bolling, S. F., Alfieri, O., Montevecchi, F. M., & Redaelli, A. (2007). The Geoform disease-specific annuloplasty system: a finite element study. Annals of Thoracic Surgery, 84, 92–101.
Choi, A., Rim, Y., Mun, J. S., & Kim, H. (2014). A novel finite element-based patient-specific mitral valve repair: virtual ring annuloplasty. Bio-medical Materials and Engineering, 24, 341–347.
Rim, Y., Laing, S. T., McPherson, D. D., & Kim, H. (2014). Mitral valve repair using ePTFE sutures for ruptured mitral Chordae. Tendineae: A computational simulation study. Annals of Biomedical Engineering, 42, 139–148.
Bortolotti, U., Milano, A. D., & Frater, R. W. (2012). Mitral valve repair with artificial chordae: a review of its history, technical details, long-term results, and pathology. Annals of Thoracic Surgery, 93, 684–691.
Komeda, M., Bolger, A. F., DeAnda, A, Jr., Tomizawa, Y., Ingels, N. B, Jr., & Miller, D. C. (1996). Improving methods of chordal sparing mitral valve replacement. Part I: A new, non-distorting isovolumic balloon preparation for the left ventricle with intact mitral subvalvular apparatus. Journal of Heart Valve Disease, 5, 376–382.
Lam, J. H., Ranganathan, N., Wigle, E. D., & Silver, M. D. (1970). Morphology of the human mitral valve, I. Chordae tendineae: a new classification. Circulation, 41, 449–458.
Maisano, F., Redaelli, A., Soncini, M., Votta, E., Arcobasso, L., & Alfieri, O. (2005). An annular prosthesis for the treatment of functional mitral regurgitation: finite element model analysis of a dog bone-shaped ring prosthesis. Annals of Thoracic Surgery, 79, 1268–1275.
Sonne, C., Sugeng, L., Watanabe, N., Weinert, L., Saito, K., Tsukiji, M., et al. (2009). Age and body surface area dependency of mitral valve and papillary apparatus parameters: assessment by real-time three-dimensional echocardiography. European Journal of Echocardiography, 10, 287–294.
Dagum, P., Timek, T. A., Green, G. R., Lai, D., Daughters, G. T., Liang, D. H., et al. (2000). Coordinate-free analysis of mitral valve dynamics in normal and ischemic hearts. Circulation, 102, III62–III69.
Joudinaud, T. M., Kegel, C. L., Flecher, E. M., Weber, P. A., Lansac, E., Hvass, U., & Duran, C. M. (2007). The papillary muscles as shock absorbers of the mitral valve complex. An experimental study. European Journal of Cardio-Thoracic Surgery, 32, 96–101.
May-Newman, K., & Yin, F. C. (1998). A constitutive law for mitral valve tissue. Journal of Biomechanical Engineering, 120, 38–47.
Reimink, M. S., Kunzelman, K. S., Verrier, E. D., & Cochran, R. P. (1995). The effect of anterior chordal replacement on mitral valve function and stresses. A finite element study. ASAIO Journal, 41, M754–M762.
Stevanella, M., Votta, E., & Redaelli, A. (2009). Mitral valve finite element modeling: implications of tissues’ nonlinear response and annular motion. Journal of Biomechanical Engineering, 131, 121010.
Langer, F., Kunihara, T., Hell, K., Schramm, R., Schmidt, K. I., Aicher, D., et al. (2009). RING + STRING: Successful repair technique for ischemic mitral regurgitation with severe leaflet tethering. Circulation, 120, S85–S91.
Silbiger, J. J. (2011). Mechanistic insights into ischemic mitral regurgitation: echocardiographic and surgical implications. Journal of the American Society of Echocardiography, 24, 707–719.
Cochran, R. P., & Kunzelman, K. S. (1998). Effect of papillary muscle position on mitral valve function: relationship to homografts. Annals of Thoracic Surgery, 66, S155–S161.