Raf-1 Cysteine-Rich Domain Increases the Affinity of K-Ras/Raf at the Membrane, Promoting MAPK Signaling
Tài liệu tham khảo
Abankwa, 2010, Ras membrane orientation and nanodomain localization generate isoform diversity, Proc. Natl. Acad. Sci. USA, 107, 1130, 10.1073/pnas.0903907107
Aramini, 2015, The RAS-binding domain of human BRAF protein serine/threonine kinase exhibits allosteric conformational changes upon binding HRAS, Structure, 23, 1382, 10.1016/j.str.2015.06.003
Axelsen, 1995, The infrared dichroism of transmembrane helical polypeptides, Biophys. J., 69, 2770, 10.1016/S0006-3495(95)80150-5
Banerjee, 2016, The disordered hypervariable region and the folded catalytic domain of oncogenic K-Ras4B partner in phospholipid binding, Curr. Opin. Struct. Biol., 36, 10, 10.1016/j.sbi.2015.11.010
Berneche, 1998, Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane, Biophys. J., 75, 1603, 10.1016/S0006-3495(98)77604-0
Brooks, 2009, CHARMM: the biomolecular simulation program, J. Comput. Chem., 30, 1545, 10.1002/jcc.21287
Carey, 2003, The requirement of specific membrane domains for Raf-1 phosphorylation and activation, J. Biol. Chem., 278, 3185, 10.1074/jbc.M207014200
Case, 2005, The Amber biomolecular simulation programs, J. Comput. Chem., 26, 1668, 10.1002/jcc.20290
Castellano, 2011, Functional specificity of ras isoforms: so similar but so different, Genes Cancer, 2, 216, 10.1177/1947601911408081
Chakrabarti, 2016, Comparison of the conformations of KRAS isoforms, K-Ras4A and K-Ras4B, points to similarities and significant differences, J. Phys. Chem. B, 120, 667, 10.1021/acs.jpcb.5b11110
Chavan, 2015, High-affinity interaction of the K-Ras4B hypervariable region with the ras active site, Biophys. J., 109, 2602, 10.1016/j.bpj.2015.09.034
Chen, 2016, Ras dimer formation as a new signaling mechanism and potential cancer therapeutic target, Mini Rev. Med. Chem., 16, 391, 10.2174/1389557515666151001152212
Chuang, 1994, Critical binding and regulatory interactions between Ras and Raf occur through a small, stable N-terminal domain of Raf and specific Ras effector residues, Mol. Cell. Biol., 14, 5318, 10.1128/MCB.14.8.5318
Damjanović, 2009, Self-guided Langevin dynamics study of regulatory interactions in NtrC, Proteins, 76, 1007, 10.1002/prot.22439
Darden, 1993, Particle mesh Ewald - an N.Log(N) method for Ewald sums in large systems, J. Chem. Phys., 98, 10089, 10.1063/1.464397
Drugan, 1996, Ras interaction with two distinct binding domains in Raf-1 may be required for Ras transformation, J. Biol. Chem., 271, 233, 10.1074/jbc.271.1.233
Fetics, 2015, Allosteric effects of the oncogenic RasQ61L mutant on Raf-RBD, Structure, 23, 505, 10.1016/j.str.2014.12.017
Ghosh, 1994, The cysteine-rich region of raf-1 kinase contains zinc, translocates to liposomes, and is adjacent to a segment that binds GTP-ras, J. Biol. Chem., 269, 10000, 10.1016/S0021-9258(17)36981-8
Goodwin, 2005, Ras diffusion is sensitive to plasma membrane viscosity, Biophys. J., 89, 1398, 10.1529/biophysj.104.055640
Gorfe, 2007, Structure and dynamics of the full-length lipid-modified H-Ras protein in a 1,2-dimyristoylglycero-3-phosphocholine bilayer, J. Med. Chem., 50, 674, 10.1021/jm061053f
Han, 2000, A host-guest system to study structure-function relationships of membrane fusion peptides, Proc. Natl. Acad. Sci. USA, 97, 13097, 10.1073/pnas.230212097
Herrmann, 1995, Quantitative analysis of the complex between p21ras and the Ras-binding domain of the human Raf-1 protein kinase, J. Biol. Chem., 270, 2901, 10.1074/jbc.270.7.2901
Hommel, 1994, Solution structure of a cysteine rich domain of rat protein kinase C, Nat. Struct. Biol., 1, 383, 10.1038/nsb0694-383
Houssa, 1998, Specificity of cysteine-rich domains in diacylglycerol kinases and protein kinases C, Biochem. J., 331, 677, 10.1042/bj3310677u
Improta-Brears, 1999, Mutational analysis of Raf-1 cysteine rich domain: requirement for a cluster of basic aminoacids for interaction with phosphatidylserine, Mol. Cell. Biochem., 198, 171, 10.1023/A:1006981411691
Jambrina, 2016, Phosphorylation of RAF kinase dimers drives conformational changes that facilitate transactivation, Angew. Chem. Int. Ed., 55, 983, 10.1002/anie.201509272
Jang, 2015, Mechanisms of membrane binding of small GTPase K-Ras4B farnesylated hypervariable region, J. Biol. Chem., 290, 9465, 10.1074/jbc.M114.620724
Jang, 2017, Flexible-body motions of calmodulin and the farnesylated hypervariable region yield a high-affinity interaction enabling K-Ras4B membrane extraction, J. Biol. Chem., 292, 12544, 10.1074/jbc.M117.785063
Jang, 2016, The higher level of complexity of K-Ras4B activation at the membrane, FASEB J., 30, 1643, 10.1096/fj.15-279091
Jang, 2016, Membrane-associated Ras dimers are isoform-specific: K-Ras dimers differ from H-Ras dimers, Biochem. J., 473, 1719, 10.1042/BCJ20160031
Jaumot, 2002, The linker domain of the Ha-Ras hypervariable region regulates interactions with exchange factors, Raf-1 and phosphoinositide 3-kinase, J. Biol. Chem., 277, 272, 10.1074/jbc.M108423200
Kauke, 2017, An engineered protein antagonist of K-Ras/B-Raf interaction, Sci. Rep., 7, 5831, 10.1038/s41598-017-05889-7
Kenworthy, 2004, Dynamics of putative raft-associated proteins at the cell surface, J. Cell Biol., 165, 735, 10.1083/jcb.200312170
Lacal, 1986, Ras p21 proteins with high or low GTPase activity can efficiently transform NIH/3T3 cells, Cell, 44, 609, 10.1016/0092-8674(86)90270-9
Lague, 2005, Molecular dynamics simulations of the influenza hemagglutinin fusion peptide in micelles and bilayers: conformational analysis of peptide and lipids, J. Mol. Biol., 354, 1129, 10.1016/j.jmb.2005.10.038
Laude, 2008, Palmitoylation and localisation of RAS isoforms are modulated by the hypervariable linker domain, J. Cell Sci., 121, 421, 10.1242/jcs.020107
Lavoie, 2015, Regulation of RAF protein kinases in ERK signalling, Nat. Rev. Mol. Cell Biol., 16, 281, 10.1038/nrm3979
Leicht, 2007, Raf kinases: function, regulation and role in human cancer, Biochim. Biophys. Acta, 1773, 1196, 10.1016/j.bbamcr.2007.05.001
Li, 2017, Computational modeling reveals that signaling lipids modulate the orientation of K-Ras4A at the membrane reflecting protein topology, Structure, 25, 679, 10.1016/j.str.2017.02.007
Liao, 2016, RASSF5: an MST activator and tumor suppressor in vivo but opposite in vitro, Curr. Opin. Struct. Biol., 41, 217, 10.1016/j.sbi.2016.09.001
Lu, 2015, GTP binding and oncogenic mutations may attenuate hypervariable region (HVR)-catalytic domain interactions in small GTPase K-Ras4B, exposing the effector binding site, J. Biol. Chem., 290, 28887, 10.1074/jbc.M115.664755
Lu, 2014, The structural basis of ATP as an allosteric modulator, PLoS Comput. Biol., 10, e1003831, 10.1371/journal.pcbi.1003831
Lu, 2016, Ras conformational ensembles, allostery, and signaling, Chem. Rev., 116, 6607, 10.1021/acs.chemrev.5b00542
Lu, 2016, The structural basis of oncogenic mutations G12, G13 and Q61 in small GTPase K-Ras4B, Sci. Rep., 6, 21949, 10.1038/srep21949
Malumbres, 2003, RAS oncogenes: the first 30 years, Nat. Rev. Cancer, 3, 459, 10.1038/nrc1097
Mazhab-Jafari, 2015, Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site, Proc. Natl. Acad. Sci. USA, 112, 6625, 10.1073/pnas.1419895112
Mott, 1996, The solution structure of the Raf-1 cysteine-rich domain: a novel ras and phospholipid binding site, Proc. Natl. Acad. Sci. USA, 93, 8312, 10.1073/pnas.93.16.8312
Murakoshi, 2004, Single-molecule imaging analysis of Ras activation in living cells, Proc. Natl. Acad. Sci. USA, 101, 7317, 10.1073/pnas.0401354101
Muratcioglu, 2015, GTP-dependent K-Ras dimerization, Structure, 23, 1325, 10.1016/j.str.2015.04.019
Nan, 2015, Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) PATHWAY, Proc. Natl. Acad. Sci. USA, 112, 7996, 10.1073/pnas.1509123112
Niv, 2002, Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells, J. Cell Biol., 157, 865, 10.1083/jcb.200202009
Nussinov, 2017, Intrinsic protein disorder in oncogenic KRAS signaling, Cell. Mol. Life Sci., 74, 3245, 10.1007/s00018-017-2564-3
Nussinov, 2016, A new view of Ras isoforms in cancers, Cancer Res., 76, 18, 10.1158/0008-5472.CAN-15-1536
Nussinov, 2017, Oncogenic Ras isoforms signaling specificity at the membrane, Cancer Res.
Phillips, 2005, Scalable molecular dynamics with NAMD, J. Comput. Chem., 26, 1781, 10.1002/jcc.20289
Pierce, 2014, ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers, Bioinformatics, 30, 1771, 10.1093/bioinformatics/btu097
Plowman, 2008, Electrostatic interactions positively regulate K-Ras nanocluster formation and function, Mol. Cell. Biol., 28, 4377, 10.1128/MCB.00050-08
Prakash, 2016, Oncogenic K-Ras binds to an anionic membrane in two distinct orientations: a molecular dynamics analysis, Biophys. J., 110, 1125, 10.1016/j.bpj.2016.01.019
Quinlan, 2009, Isoform-specific ras functions in development and cancer, Future Oncol., 5, 105, 10.2217/14796694.5.1.105
Ryckaert, 1977, Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, J. Comput. Phys., 23, 327, 10.1016/0021-9991(77)90098-5
Sperlich, 2016, Regulation of K-Ras4B membrane binding by calmodulin, Biophys. J., 111, 113, 10.1016/j.bpj.2016.05.042
Thapar, 2004, NMR characterization of full-length farnesylated and non-farnesylated H-Ras and its implications for Raf activation, J. Mol. Biol., 343, 1391, 10.1016/j.jmb.2004.08.106
Tse, 2016, Exploring molecular mechanisms of paradoxical activation in the BRAF kinase dimers: atomistic simulations of conformational dynamics and modeling of allosteric communication networks and signaling pathways, PLoS One, 11, e0166583, 10.1371/journal.pone.0166583
van Hattum, 2014, Chemical biology tools for regulating RAS signaling complexity in space and time, Chem. Biol., 21, 1185, 10.1016/j.chembiol.2014.08.001
Walker, 2014, Conserved electrostatic fields at the Ras-effector interface measured through vibrational Stark effect spectroscopy explain the difference in tilt angle in the Ras binding domains of Raf and RalGDS, Phys. Chem. Chem. Phys., 16, 20047, 10.1039/C4CP00743C
Wan, 2004, Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF, Cell, 116, 855, 10.1016/S0092-8674(04)00215-6
Wu, 2003, Self-guided Langevin dynamics simulation method, Chem. Phys. Lett., 381, 512, 10.1016/j.cplett.2003.10.013
Yan, 1998, Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase, J. Biol. Chem., 273, 24052, 10.1074/jbc.273.37.24052
Yang, 2014
Zeng, 1999, Molecular dynamics simulations of the Ras:Raf and Rap:Raf complexes, Proteins, 35, 89, 10.1002/(SICI)1097-0134(19990401)35:1<89::AID-PROT9>3.0.CO;2-S
Zhang, 1995, Crystal structure of the cys2 activator-binding domain of protein kinase C delta in complex with phorbol ester, Cell, 81, 917, 10.1016/0092-8674(95)90011-X
Zhang, 2017, Phosphorylation weakens but does not inhibit membrane binding and clustering of K-Ras4B, ACS Chem. Biol., 12, 1703, 10.1021/acschembio.7b00165
Zhou, 2002, Solution structure and functional analysis of the cysteine-rich C1 domain of kinase suppressor of Ras (KSR), J. Mol. Biol., 315, 435, 10.1006/jmbi.2001.5263