Portuguese wild hop diversity assessment by fast SNP genotyping using high-resolution melting
Tóm tắt
A set of seven SNP markers was used to evaluate the genetic diversity of wild Portuguese hops in comparison with commercial cultivars. A collection of 110 wild genotypes and 33 cultivars was characterized by a high-resolution melting analysis of short amplicons targeting SNP loci. Most of the 143 genotypes (75%) could be differentiated. Phylogenetic analysis showed three main clusters, one included almost exclusively (98%) wild accessions, being the others constituted of both wild and commercial genotypes. The study of population genetic structure placed the accessions into three genetic units, being one exclusively of Portuguese genotypes. The study showed the great biodiversity of the Portuguese hop germplasm and the notable differences (FST = 0.163, p<0.00001) from commercial hops. Results support the usefulness of the use of these seven markers for hop discrimination, with the fast and high-throughput HRMA technique for allele calling and contribute to the affirmation of the high richness breeding potential of Portuguese wild hops.
Tài liệu tham khảo
Abbott MS, Fedele MJ (1994) A DNA-based varietal identification procedure for hop leaf tissue. J I Brewing 100(4):283–285. https://doi.org/10.1002/j.2050-0416.1994.tb00825.x
Brooks SN, Horner CE, Likens ST, Zimmermann CE (1972) Registration of Cascade Hop1 (Reg. No. 1). Crop Science 12 (3). https://doi.org/10.2135/cropsci1972.0011183X001200030044x
Chagné D (2015) Application of the high-resolution melting technique for gene mapping and SNP detection in plants. In: Batley J (ed) Plant genotyping: methods and protocols. Springer, New York, pp 151–159. https://doi.org/10.1007/978-1-4939-1966-6_11
Chagné D, Gasic K, Crowhurst RN, Han Y, Bassett HC, Bowatte DR, Lawrence TJ, Rikkerink EHA, Gardiner SE, Korban SS (2008) Development of a set of SNP markers present in expressed genes of the apple. Genomics 92(5):353–358. https://doi.org/10.1016/j.ygeno.2008.07.008
De Koeyer D, Douglass K, Murphy A, Whitney S, Nolan L, Song Y, De Jong W (2009) Application of high-resolution DNA melting for genotyping and variant scanning of diploid and autotetraploid potato. Molecular Breeding 25(1):67. https://doi.org/10.1007/s11032-009-9309-4
Distefano G, La Malfa S, Gentile A, Wu S-B (2013) EST-SNP genotyping of citrus species using high-resolution melting curve analysis. Tree Genet Genomes 9(5):1271–1281. https://doi.org/10.1007/s11295-013-0636-6
Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361. https://doi.org/10.1007/s12686-011-9548-7
Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10(3):564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
Gori A, Cerboneschi M, Tegli S (2012) High-resolution melting analysis as a powerful tool to discriminate and genotype Pseudomonas savastanoi pathovars and strains. Plos One 7(1):e30199. https://doi.org/10.1371/journal.pone.0030199
Han Y, Khu D-M, Monteros MJ (2012) High-resolution melting analysis for SNP genotyping and mapping in tetraploid alfalfa (Medicago sativa L.). Mol Breeding 29(2):489–501. https://doi.org/10.1007/s11032-011-9566-x
Haunold A, Likens ST, Nickerson GB, Kenny ST (1984) Nugget, a new hop cultivar with high alpha-acids potential. J Am Soc Brew Chem 42(2):62–64. https://doi.org/10.1094/ASBCJ-42-0062
Henning JA, Coggins J, Peterson M (2015) Simple SNP-based minimal marker genotyping for Humulus lupulus L. identification and variety validation. BMC Res Notes 8:542–542. https://doi.org/10.1186/s13104-015-1492-2
Horreo JL, Peredo EL, Olmedo JL, Valladares JE, García E, Revilla MA (2014) Genetic diversity inferred from microsatellites of wild hops in Galicia (Spain). Brewing Sci 67(11-12):132–136
Jakse J, Štajner N, Kozjak P, Čerenak A, Javornik B (2008) Trinucleotide microsatellite repeat is tightly linked to male sex in hop (Humulus lupulus L.). Mol Breeding 21(2):139–148. https://doi.org/10.1007/s11032-007-9114-x
Karabín M, Hudcová T, Jelínek L, Dostálek P (2016) Biologically active compounds from hops and prospects for their use. Comprehensive Rev Food Sci Food Safety 15(3):542–567. https://doi.org/10.1111/1541-4337.12201
Koelling J, Coles MC, Matthews PD, Schwekendiek A (2012) Development of new microsatellite markers (SSRs) for Humulus lupulus. Mol Breeding 30(1):479–484. https://doi.org/10.1007/s11032-011-9637-z
Krofta K, Nesvadba V, Patzak J (1998) Utilization of wild hops testation for extention of genetic sources for breeding. Rostlinna Vyroba 44(7):313–320
Leaché AD, Oaks JR (2017) The utility of single nucleotide polymorphism (SNP) data in phylogenetics. Annual Rev Ecol Evol Systematics 48(1):69–84. https://doi.org/10.1146/annurev-ecolsys-110316-022645
Matthews P, Coles M, Pitra N (2013) Next generation sequencing for a plant of great tradition: application of NGS to SNP detection and validation in hops (Humulus lupulus L). Monatsschrift Fur Brauwissenschaft (Internet) 66:186
McAdam EL, Freeman JS, Whittock SP, Buck EJ, Jakse J, Čerenak A, Javornik B, Kilian A, Wang C-H, Andersen D, Vaillancourt RE, Carling J, Beatson R, Graham L, Graham D, Darby P, Koutoulis A (2013) Quantitative trait loci in hop (Humulus lupulusL.) reveal complex genetic architecture underlying variation in sex, yield and cone chemistry. BMC Genomics 14(1):360. https://doi.org/10.1186/1471-2164-14-360
Mongelli A, Rodolfi M, Ganino T, Marieschi M, Dall’Asta C, Bruni R (2015) Italian hop germplasm: characterization of wild Humulus lupulus L. genotypes from Northern Italy by means of phytochemical, morphological traits and multivariate data analysis. Ind Crop Prod 70:16–27. https://doi.org/10.1016/j.indcrop.2015.02.036
Muleo R, Colao MC, Miano D, Cirilli M, Intrieri MC, Baldoni L, Rugini E (2009) Mutation scanning and genotyping by high-resolution DNA melting analysis in olive germplasm. Genome 52(3):252–260. https://doi.org/10.1139/G09-002
Murakami A, Darby P, Javornik B, MSS P, Seigner E, Lutz A, Svoboda P (2006) Molecular phylogeny of wild hops, Humulus lupulus L. Heredity 97(1):66–74. https://doi.org/10.1038/sj.hdy.6800839
Neve RA (1991) Varieties and breeding. In: Neve RA (ed) Hops, 1st edn. Springer, Dordrecht, pp 195–223. https://doi.org/10.1007/978-94-011-3106-3
Patzak J (2001) Comparison of RAPD, STS, ISSR and AFLP molecular methods used for assessment of genetic diversity in hop (Humulus lupulus L.). Euphytica 121(1):9–18. https://doi.org/10.1023/a:1012099123877
Patzak J, Henychová A (2018) Evaluation of genetic variability within actual hop (Humulus lupulus L.) cultivars by an enlarged set of molecular markers. Czech J Genet Plant Breed 54(2):86–91
Patzak J, Nesvadba V, Henychová A, Krofta K (2010a) Assessment of the genetic diversity of wild hops (Humulus lupulus L.) in Europe using chemical and molecular analyses. Biochem Systematics Ecol 38(2):136–145. https://doi.org/10.1016/j.bse.2009.12.023
Patzak J, Nesvadba V, Krofta K, Henychova A, Marzoev AI, Richards K (2010b) Evaluation of genetic variability of wild hops (Humulus lupulus L.) in Canada and the Caucasus region by chemical and molecular methods. Genome 53(7):545–557. https://doi.org/10.1139/g10-024
Peredo EL, Ángeles Revilla M, Reed BM, Javornik B, Cires E, Prieto JAF, Arroyo-García R (2010) The influence of European and American wild germplasm in hop (Humulus lupulus L.) cultivars. Genet Resour Crop Ev 57(4):575–586. https://doi.org/10.1007/s10722-009-9495-2
Pillay M, Kenny ST (1996) Structure and inheritance of ribosomal DNA variants in cultivated and wild hop, Humulus lupulus L. Theoreticald Appl Genet 93(3):333–340. https://doi.org/10.1007/bf00223173
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945
Rocha F (2005) Distribuição e ecologia do lúpulo (Humulus lupulus L.) em Portugal. Universidade do Minho
Rodolfi M, Silvanini A, Chiancone B, Marieschi M, Fabbri A, Bruni R, Ganino T (2018) Identification and genetic structure of wild Italian Humulus lupulus L. and comparison with European and American hop cultivars using nuclear microsatellite markers. Genet Resour Crop Ev 65(5):1405–1422. https://doi.org/10.1007/s10722-018-0622-9
Schönberger C, Kostelecky T (2011) 125th anniversary review: the role of hops in brewing. J Inst Brew 117(3):259–267
Seefelder S, Ehrmaier H, Schweizer G, Seigner E (2000) Genetic diversity and phylogenetic relationships among accessions of hop, Humulus lupulus, as determined by amplified fragment length polymorphism fingerprinting compared with pedigree data. Plant Breeding 119(3):257–263. https://doi.org/10.1046/j.1439-0523.2000.00500.x
Simko I (2016) High-resolution DNA melting analysis in plant research. Trends in Plant Science 21(6):528–537. https://doi.org/10.1016/j.tplants.2016.01.004
Słomka M, Sobalska-Kwapis M, Wachulec M, Bartosz G, Strapagiel D (2017) High resolution melting (HRM) for high-throughput genotyping—limitations and caveats in practical case studies. Int J Mol Sci 18(11):2316
Štajner N, Šatović Z, Čerenak A, Javornik B (2008) Genetic structure and differentiation in hop (Humulus lupulus L.) as inferred from microsatellites. Euphytica 161(1):301–311. https://doi.org/10.1007/s10681-007-9429-z
Šuštar-Vozlič J, Javornik B (1999) Genetic relationships in cultivars of hop, Humulus lupulus L., determined by RAPD analysis. Plant Breeding 118(2):175–181. https://doi.org/10.1046/j.1439-0523.1999.118002175.x
Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49(6):853–860. https://doi.org/10.1373/49.6.853
Wu B, G-y Z, J-q Y, Yang R-t, Li C, Y-j L, Zhong Y, Wang X, Jiang B, J-w Z, Zhang L, S-t Y, X-j B, D-g Z (2014) Identification of Pummelo cultivars by using a panel of 25 selected SNPs and 12 DNA segments. Plos One 9(4):e94506. https://doi.org/10.1371/journal.pone.0094506