Association of reactive oxygen species levels and radioresistance in cancer stem cells

Nature - Tập 458 Số 7239 - Trang 780-783 - 2009
Maximilian Diehn1, Robert W. Cho2, Neethan A. Lobo2, Tomer Kalisky3, Mary J. Dorie1, Angela N. Kulp2, Dalong Qian2, Jessica Lam2, Laurie Ailles2, Manzhi Wong2, Ben‐Zion Joshua4, Michael J. Kaplan4, Irene Wapnir5, Frederick M. Dirbas5, George Somlo6, Carlos A. Garberoglio5, Benjamin Paz5, Jeannie Shen5, Sean K. Lau7, Stephen R. Quake3, Janice M. Brown1, Irving L. Weissman8, Michael F. Clarke9
1Department of Radiation Oncology
2Stanford Institute for Stem Cell Biology and Regenerative Medicine,,
3Department of Bioengineering and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA,
4Department of Otolaryngology—Head and Neck Surgery
5Department of Surgery
6Department of Medical Oncology and Therapeutics Research
7Department of Pathology, City of Hope National Medical Center, Duarte, California, California 91010, USA,
8Departments of Pathology and Developmental Biology,,
9Department of Medicine, Stanford University School of Medicine, Stanford California 94305, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Smith, J., Ladi, E., Mayer-Proschel, M. & Noble, M. Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell. Proc. Natl Acad. Sci. USA 97, 10032–10037 (2000)

Tsatmali, M., Walcott, E. C. & Crossin, K. L. Newborn neurons acquire high levels of reactive oxygen species and increased mitochondrial proteins upon differentiation from progenitors. Brain Res. 1040, 137–150 (2005)

Ito, K. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431, 997–1002 (2004)

Ito, K. et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nature Med. 12, 446–451 (2006)

Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007)

Miyamoto, K. et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1, 101–112 (2007)

Powell, S. & McMillan, T. J. DNA damage and repair following treatment with ionizing radiation. Radiother. Oncol. 19, 95–108 (1990)

Ward, J. F. Biochemistry of DNA lesions. Radiat. Res. Suppl. 8, S103–S111 (1985)

Shackleton, M. et al. Generation of a functional mammary gland from a single stem cell. Nature 439, 84–88 (2006)

Stingl, J. et al. Purification and unique properties of mammary epithelial stem cells. Nature 439, 993–997 (2006)

Jang, Y. Y. & Sharkis, S. J. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110, 3056–3063 (2007)

Hosokawa, K. et al. Function of oxidative stress in the regulation of hematopoietic stem cell-niche interaction. Biochem. Biophys. Res. Commun. 363, 578–583 (2007)

Liu, R. et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N. Engl. J. Med. 356, 217–226 (2007)

Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005)

Cho, R. W. et al. Isolation and molecular characterization of cancer stem cells in MMTV-Wnt-1 murine breast tumors. Stem Cells 26, 364–371 (2008)

Riley, P. A. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int. J. Radiat. Biol. 65, 27–33 (1994)

Dorie, M. J. et al. DNA damage measured by the comet assay in head and neck cancer patients treated with tirapazamine. Neoplasia 1, 461–467 (1999)

Cohen-Jonathan, E., Bernhard, E. J. & McKenna, W. G. How does radiation kill cells? Curr. Opin. Chem. Biol. 3, 77–83 (1999)

Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006)

Phillips, T. M., McBride, W. H. & Pajonk, F. The response of CD24-/low/CD44+ breast cancer-initiating cells to radiation. J. Natl. Cancer Inst. 98, 1777–1785 (2006)

Estrela, J. M., Ortega, A. & Obrador, E. Glutathione in cancer biology and therapy. Crit. Rev. Clin. Lab. Sci. 43, 143–181 (2006)

Warren, L., Bryder, D., Weissman, I. L. & Quake, S. R. Transcription factor profiling in individual hematopoietic progenitors by digital RT–PCR. Proc. Natl Acad. Sci. USA 103, 17807–17812 (2006)

Griffith, O. W. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic. Biol. Med. 27, 922–935 (1999)

Hahn, S. M. et al. Potential use of nitroxides in radiation oncology. Cancer Res. 54, 2006s–2010s (1994)

Bailey, H. H. l-S,R-buthionine sulfoximine: historical development and clinical issues. Chem. Biol. Interact. 111–112, 239–254 (1998)

Jamieson, C. H. et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med. 351, 657–667 (2004)

Akala, O. O. et al. Long-term haematopoietic reconstitution by Trp53-/-p16Ink4a-/-p19Arf-/- multipotent progenitors. Nature 453, 228–232 (2008)

Saretzki, G. et al. Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cells. Stem Cells 26, 455–464 (2008)

Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003)

Prince, M. E. et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl Acad. Sci. USA 104, 973–978 (2007)

Liao, M. J. et al. Enrichment of a population of mammary gland cells that form mammospheres and have in vivo repopulating activity. Cancer Res. 67, 8131–8138 (2007)