High-order mode based dispersion compensating modules using spatial mode conversion

M. Tur1, D. Menashe2, Y. Japha3, Y. Danziger
1School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
2RED-C Optical Networks, Atidim Tech. Park, Bldg 3, Tel-Aviv, Israel
3Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, 84150, Israel

Tóm tắt

High-Order Mode Dispersion Compensating Modules (HOM-DCM) using spatial optical transformations for mode conversion are reviewed. It is shown that mode transformers using this technology can be designed to transform the LP01 mode of SMF fibers to the LP02 mode of specially designed dispersion compensating High-Order Mode Fiber (HOMF), with typical insertion loss of ∼1 dB, and typical extinction ratio to other modes less than -20 dB. The HOMF itself can provide high negative dispersion [typically in the range of 400-600 ps/(nm km)], and high negative dispersion slope, allowing efficient compensation of all types of transmission fiber. Combining two mode transformers with HOMF and possibly trim fiber for fine-tuning, results, for example, in a HOM-DCM that compensates 100 km LEAF® fiber, with Insertion loss < 3.5 dB, and Multi-Path Interference (MPI) < -36 dB. MPI phenomena in HOM-DCMs is characterized, and shown to comprise both coherent and incoherent parts, and to result from both the mode transformers and fiber coupling within the HOMF. MPI values of < -36 dB have been shown to allow error free transmission of 10 Gb/s signals over up to 6000 km. Finally, a number of applications well suited to the properties of HOM-DCMs are reviewed.

Tài liệu tham khảo

C.D. Poole, J.M. Wiesenfeld, A.R. McCormick, and K.T. Nelson, "Broadband dispersion compensation by using high-order spatial mode in a two-mode fiber'', Opt. Lett. 17, 985-987 (1992). C.D. Poole, J.M. Wiesenfeld, D.J. DiGiovanni, and A.M. Vengsarkar, "Optical fiber-based dispersion compensation using higher order modes near cutoff ", J. Lightwave Technol. 12, 1745-1758 (1994). M. Eguchi, M. Koshiba, and Y. Tsuji, "Dispersion compensation based on dual-mode optical fiber with inhomogeneous profile core", J. Lightwave Technol. 14, 2387 (1996). J.A. Buck, Fundamentals of optical fibers (John Wiley, 1995). A.H. Gnauck and R.M. Jopson, "Dispersion compensation for optical fiber sytems", in Optical fiber Telelcommunications, IIIA (Academic Press, 1997). G.P. Agrawal, Fiber-optic communication systems (Wiley-Interscience, 1997). H.G. Park and B.Y. Kim, "Intermodal coupler using permanently photoinduced grating in two-mode optical fibre", Electron. Lett. 25, 797-799 (1989). S. Ramachandran, B. Mikkelsen, L.C. Cowsar, M.F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W.A. Reed, P. Wisk, D. Brownlow, R.G. Huff, and L. Gruner-Nielsen, "All-fiber grating-based higher order mode dispersion compensator for broad-band compensation and 1000-km transmission at 40 Gb/s", IEEE Photon. Technol. Lett. 13, 632-634 (2001). S. Ramachandran, Z. Wang, and M. Yan, "Bandwidth control of long-period grating-based mode converters in few-mode fibers", Opt. Lett. 27, 698 (2002). S. Choi, W. Shin, and K. Oh, "Higher-order-mode dispersion compensation technique based on mode converter using hollow optical fiber", in Proc. Optical Fiber Communication Conference 2002, pp. 177-178. R. Oron, Y. Danziger, N. Davidson, A.A. Friesem, and E. Hasman, "Transverse Mode Selection with Phase Elements", Conference on Lasers and Electro-Optics Europe (CLEO/Europe), p. 365, September 1998. J.W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw Hill, 1996). M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999). J. Bengtsson and M. Johansson, "Fan-out diffractive optical elements designed for increased fabrication tolerances to linear relief depth errors", Appl. Opt. 41, 281-289 (2002). R.G. Dorsch, A.W. Lohmann, and S. Sinzinger, "Fresnel ping-pong algorithm for 2-plane computer-generated hologram display", Appl. Opt. 33, 869-875 (1994). L. Gruner-Nielsen, S.N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C.C Larsen, and H. Damsgaard, "Dispersion Compensating Fibers", Opt. Fiber Technol. 6, 164-180 (2000). M.J. Li, "Recent progress in fiber dispersion compensators", Paper Th.M.1.1., ECOC 2001, Amsterdam. U. Levy and M. Tur, "Projected Zero Dispersion--A Concept for Link Design", Tech. Digest of NFOEC 2002, p. 1527. M. Wandel, T. Veng, Q. Le, and L. Gr uner-Nielsen, "Dispersion compensating fibre with a high figure of merit", Proceedings of 2001 European Conference on Optical Communications, Paper PD.A.1.4. M. Wandel, P. Kristensen, T. Veng, Y. Qian, Q. Le, and L. Gruner-Nielsen, "Dispersion compensating fibers for non-zero dispersion fibers", OFC 2002, Paper WU1. Allan W. Snyder and John D. Love, Optical Waveguide Theory (Kluwer Academic, 1983). D. Marcuse, "Bend loss of slab and fiber modes computed with diffraction theory", IEEE J. Quantum Electron. 29, 2957-2961 (1993). D. Marcuse, "Microdeformation losses of single-mode fibers", Appl. Opt. 23, 1082 (1984). A. Bjarklev, "Microdeformation losses of single-mode fibers with step-index profiles", J. Lightwave Technol. 4, 341 (1986). C.B. Probst, A. Bjarklev, and S.B. Andreasen, "Experimental verification of microbending theory using mode coupling to discrete cladding modes", J. Lightwave Technol. 7, 55 (1989). D Derickson, Fiber Optic test and measurement (Prentice-Hall, New Jersey, 1998). J.A. Buck, Fundamentals of optical fibers (Wiley, New York, 1995). L. Gruner-Nielsen, Yujun Qian, B. Palsdottir, P.B. Gaarde, S. Dyrbol, and T. Veng, "Module for simultaneous C+L-band dispersion compensation and Raman amplification", Optical Fiber Communication Conference (OFC), TuJ6, Anaheim, California (2002) J.L. Gimlet and N.K. Chaung, "Effects of phase to intensity noise generated by multiple reflection on Gigabit per second DFB laser transmission systems", J. Lightwave Technol. 7, 888 (1989). S. Burtsev, W. Pelouch, and P. Gavrilovic, "Multi-path interference noise in multi-span transmission links using lumped Raman amplifiers", Optical Fiber Communication Conference and Exhibit (OFC), TuR4, Anaheim, California (2002). P.J. Legg, M. Tur, and I. Andonovic, "Solution paths to limit interferometric noise induced performance degredation in ASK/Direct detection lightwave networks", J. Lightwave Technol. 14, 1943 (1996). S. Ramachandran, J.W. Nicholson, S. Ghalmi, and M. F. Yan, "Measurement of multipath interference in the coherent crosstalk regime", IEEE Photon. Technol. Lett. 15, 1171-1173 (August 2003). Y. Shen, K. Lu, and W. Gu, "Coherent and incoherent crosstalk in WDM optical networks", J. Lightwave Technol. 17, 756 (1999). S. Ramachandran, S. Ghalmi, J. Bromage, S. Chandrasekhar, and L.L. Buhl, "Evolution and Systems Impact of Coherent Distributed Multipath Interference", IEEE Photon. Technol. Lett. 17, 238 (2005). H. Takahashi, O. Kazuhiro, and T. Hiromu, "Impact of crosstalk in an arrayed waveguide multiplexer on N×N Optical Interconnection", J. Lightwave Technol. 14, 1097 (1996). C.X. Yu, W. Wang, and S.D.Brorson, "System degredation due to multipath coherent crosstalk in WDM network nodes", J. Lightwave Technol. 16, 1380 (1998). S.D. Dods and A.J. Lowery, "Temporal Statistics of Crosstalk-Induced Errors in WDM Optical Networks", NFOEC 2001, Session C5, pp. 876-879 (2001). A.H. Gnauck, L.D. Garrett, Y. Danziger, U. Levy, and M. Tur, "Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre", Electron. Lett. 35 (23), 1946-1947 (2000). R.I. Killey, V. Mikhailov, S. Appathurai, and P. Bayvel, "Investigation of Nonlinear Distortion in 40-Gb/s Transmission With Higher Order Mode Fiber Dispersion Compensators", J. Lightwave Technol. 20, 2282 (2002). C. Meyer, S. Lobo S, D. Le Guen, F. Merlaud, L. Billes, and T. Georges, "High spectral efficiency wideband terrestrial ULH RZ transmission over LEAF® with realistic industrial margins", paper 1.1.2, ECOC 2002. L.D. Garrett, M. Eiselt, J. Weisenfeld, R. Tkach, D. Menashe, U. Levy, Y. Danziger, and M. Tur, "ULH DWDM Transmission with HOM-Based Dispersion Compensation", The 29th European Conference on Optical Communication (ECOC), Rimini, Italy, September 2003. L.D. Garrett, M.H. Eiselt, J.M. Weisenfeld, M.R. Young, and R. Tkach, "Bidirectional ULH transmission of 160-gb/s full-duplex capacity over 5000 km in a fully bidirectional recirculating loop", IEEE Photon. Technol. Lett. 16, 1757-1759 (2004). B. Zhu, L. Leng, L.E. Nelson, L. Gruner-Nielsen,Y. Qian, J. Bromage, S. Stulz, S. Kado, Y. Emori, S. Namiki, P. Gaarde, A. Judy, B. Palsdottir, and R.L. Lingle Jr., "3.2Tb/s (80 /spl times/ 42.7 Gb/s) transmission over 20 /spl times/ 100 km of non-zero dispersion fiber with simultaneous C + L-band dispersion compensation", paper FC8, Optical Fiber Communication Conference and Exhibit, (OFC), 2002. K. Mukasa, H. Moridaira, T. Yagi, and K. Kokura, "New type of dispersion management transmission line with MDFSD for long-haul 40 GB/s transmission", paper ThGG2, Optical Fiber Communication Conference (OFC), Anaheim, California, 2002. H. Bissessur, A. Hugbart, C. Bastide, S. Gauchard, and S. Ruggeri, "Transmission of 32 × 43 Gb/s over 27 × 100 km of TeraLight fiber with low-cost EDFA amplification", Paper ThE3, Optical Fiber Communication Conference (OFC), Los Angeles, California, 2004. F. Forghieri, R.W. Tkach, and A.R. Chraplyvy, in "Optical Fiber Telecommunications, IIIA", edited by I.P. Kaminow and T.L. Koch, pp. 196-264 (Academic Press, 1997). G.P. Agrawal, Non-Linear Fiber Optics, 2nd ed. (Academic Press, 1997). M. Tur, E. Herman, and Y. Danziger, "Nonlinear properties of dispersion management modules employing high-order mode fibers", Optical Fiber Communication Conference and Exhibit (OFC), TuS5-1-TuS5-3, (2001. M. Tur, E. Herman, A. Kozhekin, and Y. Danziger, "Stimulated Brillouin Scattering in High-Order Mode Fibers Employed in Dispersion Management Modules", IEEE Photon. Technol. Lett. 14, 1282-1284 (2002). O. Mor, B. Moav, A. Ben-Dor, M. Tur, S. Steinblatt, U. Levy, and D. Menashe, "Reduced non-linearities in high order mode dispersion compensation modules", The 7th European/French-Israeli Symposium on Nonlinear and Quantum Optics (EURISNO/FRISNO), Les Houches, France, February 2003. S. Ramachandran, G. Raybon, B. Mikkelsen, A. Yan, L. Cowsar, and R.J. Essiambre, "1700 km transmission at 40 Gbit/s with 100 km amplifier spacing enabled by higher-order-mode dispersion compensation", Electron. Lett. 37, 1352-1354 (2001). E. Desurvire, Erbium-doped fiber amplifiers: principles and applications (Wiley, 1994). S. Ramachandran, S. Ghalmi, S. Chandrasekhar, I. Ryazansky, M. F. Yan, F. V. Dimarcello, W. A. Reed, and P. Wisk, "Tunable Dispersion Compensators Utilizing Higher Order Mode Fibers", IEEE Photon. Technol. Lett. 15, 727 (2003). S. Ghalmi, S. Ramachandran, E. Monberg, Z. Wang, M. Yan, F. Dimarcello, W. Reed, P. Wisk, and J. Fleming, "Multiple Span Dispersion Compensation Using All-Fiber Higher Order Mode Dispersion Compensators", The 28th European Conference on Optical Communication (ECOC), Paper P1.33, Copenhagen, Denmark, September, 2002. J. Fatome, S. Pitois, P. Tchofo Dinda, and G. Millot, "Experimental demonstration of 160-GHz densely dispersion-managed soliton transmission in a single channel over 896 km of commercial fibers", Opt. Express 11, 1553-1558 (2003). H. Zmuda and E.N. Toughlian, Photonic Aspects of Modern RADAR (Artech House, 1994). R. Soref, "Optical dispersion technique for time-delay beam steering", Appl. Opt. 31, 7395-7397 (1992). O. Raz, R. Rotman, Y. Danziger, and M. Tur, "Implementation of Photonic True Time Delay Using High-Order-Mode Dispersion Compensating Fibers", IEEE Photon. Technol. Lett. 16, 1367-1369 (May 2004). J.L. Corral, J. Marti, and J.M. Fuster, "General Expressions for IM/DD Dispersive Analog Optical Links With External Modulation or Optical Up-Conversion in a Mach-Zehnder Electrooptical Modulator", IEEE Trans. Microwave Theory Technol. 49, 1958-1975 (2001).