Experimental coevolution of species interactions

Trends in Ecology & Evolution - Tập 28 - Trang 367-375 - 2013
Michael A. Brockhurst1, Britt Koskella2
1Department of Biology, University of York, York YO10 5DD, UK
2BioSciences, University of Exeter, Cornwall Campus, Tremough, TR10 9EZ, UK

Tài liệu tham khảo

Janzen, 1966, Coevolution of mutualism between ants and acacias in Central America, Evolution, 20, 249, 10.2307/2406628 Ehrlich, 1964, Butterflies and plants: a study in coevolution, Evolution, 18, 586, 10.2307/2406212 Gaba, 2009, Time-shift experiments as a tool to study antagonistic coevolution, Trends Ecol. Evol., 24, 226, 10.1016/j.tree.2008.11.005 Decaestecker, 2007, Host–parasite ‘Red Queen’ dynamics archived in pond sediment, Nature, 450, 870, 10.1038/nature06291 Horne, 1970, Coevolution of Escherichia coli and bacteriophages in chemostat culture, Science, 168, 992, 10.1126/science.168.3934.992-a Cowlishaw, 1975, Co-evolution of a virus–alga system, Appl. Microbiol., 29, 234, 10.1128/AEM.29.2.234-239.1975 Chao, 1977, Complex community in a simple habitat: experimental study with bacteria and phage, Ecology, 58, 369, 10.2307/1935611 Van Valen, 1973, A new evolutionary law, Evol. Theory, 1, 1 Bell, 1982 Wilkinson, 2000, Running with the Red Queen: refelctions on ‘Sex versus non-sex versus parasite’, Oikos, 91, 589, 10.1034/j.1600-0706.2000.910322.x Brockhurst, 2011, Sex, death and the Red Queen, Science, 333, 166, 10.1126/science.1209420 Schulte, 2010, Multiple reciprocal adaptations and rapid genetic change upon experimental coevolution of an animal host and its microbial parasite, Proc. Natl. Acad. Sci. U.S.A., 107, 7359, 10.1073/pnas.1003113107 Paterson, 2010, Antagonistic coevolution accelerates molecular evolution, Nature, 464, 275, 10.1038/nature08798 Kashiwagi, 2011, Ongoing phenotypic and genomic changes in experimental coevolution of RNA bacteriophage Qβ and Escherichia coli, PLoS Genet., 7, e1002188, 10.1371/journal.pgen.1002188 Gandon, 2008, Host–parasite coevolution and patterns of adaptation across time and space, J. Evol. Biol., 21, 1861, 10.1111/j.1420-9101.2008.01598.x Koskella, 2009, Evidence for negative frequency-dependent selection during experimental coevolution of a freshwater snail and a sterilizing trematode, Evolution, 63, 2213, 10.1111/j.1558-5646.2009.00711.x Fenton, 2012, Two-step infection processes can lead to coevolution between functionally independent infection and resistance pathways, Evolution, 66, 2030, 10.1111/j.1558-5646.2012.01578.x Agrawal, 2003, Modelling infection as a two-step process combining gene-for-gene and matching-allele genetics, Proc. R. Soc. Lond. B, 270, 323, 10.1098/rspb.2002.2193 Hall, 2011, Host–parasite coevolutionary arms races give way to fluctuating selection, Ecol. Lett., 14, 635, 10.1111/j.1461-0248.2011.01624.x Gandon, 2002, Local adaptation and the geometry of host–parasite coevolution, Ecol. Lett., 5, 246, 10.1046/j.1461-0248.2002.00305.x Pal, 2007, Coevolution with viruses drives the evolution of bacterial mutation rates, Nature, 450, 1079, 10.1038/nature06350 Kerstes, 2012, Antagonistic experimental coevolution with a parasite increases host recombination frequency, BMC Evol. Biol., 12, 18, 10.1186/1471-2148-12-18 Greeff, 2010, Influence of co-evolution with a parasite, Nosema whitei, and population size on recombination rates and fitness in the red flour beetle, Tribolium castaneum, Genetica, 138, 737, 10.1007/s10709-010-9454-z Morran, 2011, Running with the Red Queen: host–parasite coevolution selects for biparental sex, Science, 333, 216, 10.1126/science.1206360 Forde, 2008, Coevolution drives temporal changes in fitness and diversity across environments in a bacteria–bacteriophage interaction, Evolution, 62, 1830 Marston, 2012, Rapid diversification of coevolving marine Synechococcus and a virus, Proc. Natl. Acad. Sci. U.S.A., 109, 4544, 10.1073/pnas.1120310109 Bérénos, 2011, Antagonistic coevolution with parasites maintains host genetic diversity: an experimental test, Proc. R. Soc. Lond. B, 278, 218, 10.1098/rspb.2010.1211 Buckling, 2002, The role of parasites in sympatric and allopatric host diversification, Nature, 420, 496, 10.1038/nature01164 Morgan, 2005, The effect of migration on local adaptation in a coevolving host–parasite system, Nature, 437, 253, 10.1038/nature03913 Forde, 2004, Adaptation varies through space and time in a coevolving host–parasitoid interaction, Nature, 431, 841, 10.1038/nature02906 Vogwill, 2010, How does spatial dispersal network affect the evolution of parasite local adaptation?, Evolution, 64, 1795, 10.1111/j.1558-5646.2009.00937.x Hoeksema, 2008, A meta-analysis of factors affecting local adaptation between interacting species, Am. Nat., 171, 275, 10.1086/527496 Greischar, 2007, A synthesis of experimental work on parasite local adaptation, Ecol. Lett., 10, 418, 10.1111/j.1461-0248.2007.01028.x Thompson, 1994 Thompson, 2005 Lopez Pascua, 2012, Abiotic heterogeneity drives parasite local adaptation in coevolving bacteria and phages, J. Evol. Biol., 25, 187, 10.1111/j.1420-9101.2011.02416.x Brockhurst, 2004, The effect of spatial heterogeneity and parasites on the evolution of host diversity, Proc. R. Soc. Lond. B, 271, 107, 10.1098/rspb.2003.2556 Vogwill, 2011, Coevolving parasites enhance the diversity-decreasing effect of dispersal, Biol. Lett., 7, 578, 10.1098/rsbl.2011.0071 Bérénos, 2012, Antagonistic coevolution accelerates the evolution of reproductive isolation in Tribolium castaneum, Am. Nat., 180, 520, 10.1086/667589 Poullain, 2008, The evolution of specificity in evolving and coevolving antagonistic interactions between a bacteria and its phage, Evolution, 62, 1 Scanlan, 2011, Genetic basis of infectivity evolution in a bacteriophage, Mol. Ecol., 20, 981, 10.1111/j.1365-294X.2010.04903.x Flores, 2011, Statistical structure of host–phage interactions, Proc. Natl. Acad. Sci. U.S.A., 108, E288, 10.1073/pnas.1101595108 Hall, 2011, Bacteria–phage coevolution and the emergence of generalist pathogens, Am. Nat., 177, 44, 10.1086/657441 Meyer, 2012, Repeatability and contingency in the evolution of a key innovation in Phage lambda, Science, 335, 428, 10.1126/science.1214449 Bohannan, 1999, Epistatic interactions can lower the cost of resistance to multiple consumers, Evolution, 53, 292, 10.2307/2640942 Brockhurst, 2005, The effect of a bacteriophage on diversification of the opportunistic bacterial pathogen, Pseudomonas aeruginosa, Proc. R. Soc. B, 272, 1385, 10.1098/rspb.2005.3086 Avrani, 2012, Virus–host swinging party in the oceans: Incorporating biological complexity into paradigms of antagonistic coexistence, Mob. Genet. Elements, 2, 88, 10.4161/mge.20031 Duffy, 2006, Pleiotropic costs of niche expansion in the RNA bacteriophage Φ6, Genetics, 172, 751, 10.1534/genetics.105.051136 Buckling, 2006, Antagonistic coevolution with parasites increases the cost of host deleterious mutations, Proc. R. Soc. B, 273, 45, 10.1098/rspb.2005.3279 Fenton, 2007, Epistatic interactions alter dynamics of multilocus gene-for-gene coevolution, PLoS ONE, 2, e1156, 10.1371/journal.pone.0001156 Zbinden, 2008, Experimental evolution of field populations of Daphnia magna in response to parasite treatment, J. Evol. Biol., 21, 1068, 10.1111/j.1420-9101.2008.01541.x Gomez, 2011, Bacteria–phage antagonistic coevolution in soil, Science, 332, 106, 10.1126/science.1198767 Yoder, 2010, When does coevolution promote diversification?, Am. Nat., 176, 802, 10.1086/657048 Hillesland, 2010, Rapid evolution of stability and productivity at the origin of a microbial mutualism, Proc. Natl. Acad. Sci. U.S.A., 107, 2124, 10.1073/pnas.0908456107 Koskella, 2012, The costs of evolving resistance in heterogeneous parasite environments, Proc. R. Soc. Lond. B, 279, 1896, 10.1098/rspb.2011.2259 Friman, 2013, Effects of predation on real-time host–parasite coevolutionary dynamics, Ecol. Lett., 16, 39, 10.1111/ele.12010 Lawrence, 2012, species interactions alter evolutionary responses to a novel environment, PLoS Biol., 10, e1001330, 10.1371/journal.pbio.1001330 Dougherty, 1949, The phylogeny of the nematode family Metastrongylidae Leiper, [1909]: a correlation of host and symbiote evolution, Parasitology, 39, 222, 10.1017/S0031182000083785 Weber, 2012, Phylogeny, ecology, and the coupling of comparative and experimental approaches, Trends Ecol. Evol., 27, 394, 10.1016/j.tree.2012.04.010 Thompson, 2005 Best, 2010, The evolution of host–parasite range, Am. Nat., 176, 63, 10.1086/653002 Bull, 1997, Exceptional convergent evolution in a virus, Genetics, 147, 1497, 10.1093/genetics/147.4.1497 Turner, 2012, Evolutionary genomics of host-use in bifurcating demes of RNA virus phi-6, BMC Evol. Biol., 12, 153, 10.1186/1471-2148-12-153 Buckling, 2009, The Beagle in a bottle, Nature, 457, 824, 10.1038/nature07892 Webster, 2007, Is host–schistosome coevolution going anywhere?, BMC Evol. Biol., 7, 91, 10.1186/1471-2148-7-91 Van den Abbeele, 2011, The host selects mucosal and luminal associations of coevolved gut microorganisms: a novel concept, FEMS Microbiol. Rev., 35, 681, 10.1111/j.1574-6976.2011.00270.x O’Flynn, 2004, Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7, Appl. Environ. Microbiol., 70, 3417, 10.1128/AEM.70.6.3417-3424.2004 Hall, 2012, Effects of sequential and simultaneous applications of bacteriophages on populations of Pseudomonas aeruginosa in vitro and in wax moth larvae, Appl. Environ. Microbiol., 78, 5646, 10.1128/AEM.00757-12 Barbas, 2009, Altering and assessing persistence of genetically modified E. coli MG1655 in the large bowel, Exp. Biol. Med., 234, 1174, 10.3181/0812-RM-358 Lee, 2010, Adaptation in a mouse colony monoassociated with Escherichia coli K-12 for more than 1,000 days, Appl. Environ. Microbiol., 76, 4655, 10.1128/AEM.00358-10 Janzen, 1980, When is it coevolution?, Evolution, 34, 611, 10.2307/2408229 Blanquart, 2013, Time-shift experiments and patterns of adaptation across time and space, Ecol. Lett., 16, 31, 10.1111/ele.12007 Schulte, 2011, Host–parasite local adaptation after experimental coevolution of Caenorhabditis elegans and its microparasite Bacillus thuringiensis, Proc. R. Soc. Lond. B: Biol. Sci., 278, 2832, 10.1098/rspb.2011.0019 Morran, 2012, Temporal dynamics of outcrossing and host mortality rates in host–pathogen experimental coevolution, Evolution, 10.1111/evo.12007 Koskella, 2007, Advice of the rose: Experimental coevolution of a trematode parasite and its snail host, Evolution, 61, 152, 10.1111/j.1558-5646.2007.00012.x Bérénos, 2009, Evolution of host resistance and trade-offs between virulence and transmission potential in an obligately killing parasite, J. Evol. Biol., 22, 2049, 10.1111/j.1420-9101.2009.01821.x Webster, 1998, Selection and strain specificity of compatibility between snail intermediate hosts and their parasitic schistosomes, Evolution, 52, 1627, 10.2307/2411336 Lohse, 2006, Experimental evolution of resistance in Paramecium caudatum against the bacterial parasite Holospora undulate, Evolution, 60, 1177, 10.1111/j.0014-3820.2006.tb01196.x Buckling, 2002, Antagonistic coevolution between a bacterium and a bacteriophage, Proc. R. Soc. Lond. B: Biol. Sci., 269, 931, 10.1098/rspb.2001.1945 Brockhurst, 2003, Population mixing accelerates coevolution, Ecol. Lett., 6, 975, 10.1046/j.1461-0248.2003.00531.x Brockhurst, 2006, Spatial heterogeneity and the stability of host–parasite coexistence, J. Evol. Biol., 19, 374, 10.1111/j.1420-9101.2005.01026.x Bohannan, 1997, Effect of resource enrichment on a chemostat community of bacteria and bacteriophage, Ecology, 78, 2303, 10.1890/0012-9658(1997)078[2303:EOREOA]2.0.CO;2 Mizoguchi, 2003, Coevolution of bacteriophage PP01 and Escherichia coli O157: H7 in continuous culture, Appl. Environ. Microbiol., 69, 170, 10.1128/AEM.69.1.170-176.2003 Friman, 2011, Pulsed-resource dynamics constrain the evolution of predator–prey interactions, Am. Nat., 177, 334, 10.1086/658364 Friman, 2008, Availability of prey resources drives evolution of predator–prey interaction, Proc. R. Soc. Lond. B: Biol. Sci., 275, 1625, 10.1098/rspb.2008.0174