Eocene–Oligocene cooling and the diversification of Hemidactylus geckos in Peninsular India
Tài liệu tham khảo
Abels, 2010, Step-wise change of Asian interior climate preceding the Eocene–Oligocene Transition (EOT), Palaeogeog. Palaeoclim. Palaeoecol., 299, 399, 10.1016/j.palaeo.2010.11.028
Agarwal, 2019, An expanded ND2 phylogeny of the brookii and prashadi groups with the description of three new Indian Hemidactylus Oken (Squamata: Gekkonidae), Zootaxa, 4619, 431, 10.11646/zootaxa.4619.3.2
Agarwal, 2014, Insights into Himalayan biogeography from geckos: a molecular phylogeny of Cyrtodactylus (Squamata: Gekkonidae), Mol. phylogenet. Evol., 80, 145, 10.1016/j.ympev.2014.07.018
Agarwal, 2014, Cryptic species and Miocene diversification of Palaearctic naked-toed geckos (Squamata: Gekkonidae) in the Indian dry zone, Zool. Scr., 43, 455, 10.1111/zsc.12062
Agarwal, 2011, A new cryptic rock-dwelling Hemidactylus (Squamata: Gekkonidae) from south India, Zootaxa, 2765, 21, 10.11646/zootaxa.2765.1.2
Agarwal, 2015, A phylogeny of the only ground-dwelling radiation of Cyrtodactylus (Squamata, Gekkonidae): diversification of Geckoella across peninsular India and Sri Lanka, Mol. phylogenet. Evol., 82, 193, 10.1016/j.ympev.2014.09.016
Agarwal, 2017, A phylogeny of open-habitat lizards (Squamata: Lacertidae: Ophisops) supports the antiquity of Indian grassy biomes, J. Biogeogr., 82, 193
Bansal, 2013, Phylogenetic analysis and molecular dating suggest that Hemidactylus anamallensis is not a member of the Hemidactylus radiation and has an ancient Late Cretaceous origin, PLoS One, 8, 10.1371/journal.pone.0060615
Bansal, 2010, Molecular phylogeny of Hemidactylus geckos (Squamata: Gekkonidae) of the Indian subcontinent reveals a unique Indian radiation and an Indian origin of Asian house geckos, Mol. phylogenet. Evol., 57, 459, 10.1016/j.ympev.2010.06.008
Bauer, 2008, On the systematics of the gekkonid genus Teratolepis Günther, 1869: another one bites the dust, Hamadryad, 33, 13
Bauer, 2010, Molecular evidence for the taxonomic status of Hemidactylus brookii group taxa (Squamata: Gekkonidae), Herpetol. J., 20, 129
Bauer, 2010, South Asia supports a major endemic radiation of Hemidactylus geckos, Mol. phylogenet. Evol., 57, 343, 10.1016/j.ympev.2010.06.014
Becerra, 2005, Timing the origin and expansion of the Mexican tropical dry forest, Proc. Natl. Acad. Sci. USA, 102, 10919, 10.1073/pnas.0409127102
Brennan, 2017, Mass turnover and recovery dynamics of a diverse Australian continental radiation, Evolution, 71, 1352, 10.1111/evo.13207
Burbrink, 2012, Evidence for determinism in species diversification and contingency in phenotypic evolution during adaptive radiation, Proc. Biol. Sci., 279, 4817, 10.1098/rspb.2012.1669
Byrne, 2011, Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota, J. Biogeogr., 38, 1635, 10.1111/j.1365-2699.2011.02535.x
Carranza, 2006, Systematics, biogeography, and evolution of Hemidactylus geckos (Reptilia: Gekkonidae) elucidated using mitochondrial DNA sequences, Mol. phylogenet. Evol., 38, 531, 10.1016/j.ympev.2005.07.012
Cerling, 1997, Global vegetation change through the Miocene/Pliocene boundary, Nature, 389, 153, 10.1038/38229
Chaitanya, 2018, A new cryptic, rupicolous species of Hemidactylus Oken, 1817 (Squamata: Gekkonidae) from Meghamalai, Tamil Nadu, India, Zootaxa, 4374, 49, 10.11646/zootaxa.4374.1.3
Clift, 2008, Correlation of Himalayan exhumation rates and Asian monsoon intensity, Nat. Geosci., 1, 875, 10.1038/ngeo351
Cyriac, 2017, Paleoclimate determines diversification patterns in the fossorial snake family Uropeltidae Cuvier, 1829, Mol. phylogenet. Evol., 116, 97, 10.1016/j.ympev.2017.08.017
Dandge, 2015, A new species of rupicolus gecko of the genus Hemidactylus Oken, 1817 (Reptilia: Squamata: Gekkonidae) from Maharashtra, central India, Russ. J. Herpetol, 22
Davis, 2005, Explosive radiation of Malpighiales supports a mid-cretaceous origin of modern tropical rain forests, Am. Nat., 165, E36, 10.1086/428296
Deepak, 2018, Aridification driven diversification of fan-throated lizards from the Indian subcontinent, Mol. Phylogenet. Evol., 120, 53, 10.1016/j.ympev.2017.11.016
Donoghue, 2014, Biome shifts and niche evolution in plants, Annu. Rev. Ecol. Evol. Syst., 45, 547, 10.1146/annurev-ecolsys-120213-091905
Drummond, 2012, Bayesian phylogenetics with BEAUti and the BEAST 1.7, Mol. Biol. Evol., 29, 1969, 10.1093/molbev/mss075
Dupont-Nivet, 2007, Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition, Nature, 445, 635, 10.1038/nature05516
Edwards, E.J., Osborne, C.P., Strömberg, C.A.E., Smith, S.A., C4 Grasses Consortium, Bond, W.J., Christin, P.-A., Cousins, A.B., Duvall, M.R., Fox, D.L., Freckleton, R.P., Ghannoum, O., Hartwell, J., Huang, Y., Janis, C.M., Keeley, J.E., Kellogg, E.A., Knapp, A.K., Leakey, A.D.B., Nelson, D.M., Saarela, J.M., Sage, R.F., Sala, O.E., Salamin, N., Still, C.J., Tipple, B., 2010. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328, 587–591. doi: http://doi.org/10.1126/science.1177216.
Edwards, 2009, Phylogenetic analyses reveal the shady history of C4 grasses Proc, Natl. Acad. Sci., 107, 2532, 10.1073/pnas.0909672107
Erwin, 2009, Climate as a driver of evolutionary change, Curr. Biol., 19, R575, 10.1016/j.cub.2009.05.047
Etienne, 2012, A conceptual and statistical framework for adaptive radiations with a key role for diversity dependence, Am. Nat., 10.1086/667574
Ezard, 2011, Interplay between changing climate and species’ ecology drives macroevolutionary dynamics, Science, 332, 349, 10.1126/science.1203060
Fick, 2017, WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas, Int. J. Climatol., 37, 4302, 10.1002/joc.5086
Fordyce, 2010, Interpreting the γ statistic in phylogenetic diversification rate studies: A rate decrease does not necessarily indicate an early burst, PLoS One, 5, e11781, 10.1371/journal.pone.0011781
Fortelius, 2006, Late Miocene and Pliocene large land mammals and climatic changes in Eurasia, Palaeogeog. Palaeoclim. Palaeoecol., 238, 219, 10.1016/j.palaeo.2006.03.042
Gaikwad, 2009, Notes on the distribution, natural history and variation of Hemidactylus albofasciatus (Grandison and Soman, 1963) (Squamata: Gekkonidae), J. Bombay Nat. History Soc., 106, 305
Gamble, 2012, Repeated origin and loss of adhesive toepads in geckos, PLoS One, 7, 10.1371/journal.pone.0039429
Gamble, 2008, Tertiary climate change and the diversification of the Amazonian gecko genus Gonatodes (Sphaerodactylidae, Squamata), Mol. phylogenet. Evol., 46, 269, 10.1016/j.ympev.2007.08.013
Giri, 2006, Notes on the distribution, natural history and variation of Hemidactylus prashadi Smith, 1935, Hamadryad, 30, 55
Giri, 2008, A new rock-dwelling Hemidactylus (Squamata: Gekkonidae) from Maharashtra, India, Hamadryad, 32, 25
Giri, 2008, A new ground-dwelling Hemidactylus (Squamata: Gekkonidae) from Maharashtra, with a key to the Hemidactylus of India, Zootaxa, 1700, 21, 10.11646/zootaxa.1700.1.2
Giri, 2017, A new species of large-bodied, tuberculate Hemidactylus Oken (Squamata: Gekkonidae) from the Eastern Ghats, India, Zootaxa, 4347, 331, 10.11646/zootaxa.4347.2.8
Gower, 2016, The role of wet-zone fragmentation in shaping biodiversity patterns in peninsular India: insights from the caecilian amphibian Gegeneophis, J. Biogeogr., 43, 1091, 10.1111/jbi.12710
Harmon, 2008, GEIGER: investigating evolutionary radiations, Bioinformatics, 24, 129, 10.1093/bioinformatics/btm538
Heinicke, 2011, Phylogeny of a trans-Wallacean radiation (Squamata, Gekkonidae, Gehyra) supports a single early colonization of Australia, Zoologica Scripta, 40, 584, 10.1111/j.1463-6409.2011.00495.x
Hoorn, 2012, A late Eocene palynological record of climate change and Tibetan Plateau uplift (Xining Basin, China), Palaeogeog. Palaeoclim. Palaeoecol., 344–345, 16, 10.1016/j.palaeo.2012.05.011
Hren, 2013, Terrestrial cooling in Northern Europe during the Eocene–Oligocene transition, Proc. Natl. Acad. Sci. USA, 110, 7562, 10.1073/pnas.1210930110
Huang, 2016, The species versus subspecies conundrum: quantitative delimitation from integrating multiple data types within a single Bayesian approach in Hercules beetles, Syst. Biol., 65, 685, 10.1093/sysbio/syv119
Ivany, 2000, Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary, Nature, 407, 887, 10.1038/35038044
Kapli, 2017, Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo, Bioinformatics, 33, 1630, 10.1093/bioinformatics/btx025
Karanth, 2003, Evolution of disjunct distributions among wet-zone species of the Indian subcontinent, Curr. Sci., 85, 1276
Kargaranbafghi, 2017, Tectonic forcing to global cooling and aridification at the Eocene–Oligocene transition in the Iranian plateau, Global Planet. Change
Lajmi, 2019, Phylogeny and biogeography of the endemic Hemidactylus geckos of the Indian subregion suggest multiple dispersals from Peninsular India to Sri Lanka, Zool. J. Linn. Soc., 186, 286, 10.1093/zoolinnean/zly047
Lajmi, 2016, Molecular data in conjunction with morphology help resolve the Hemidactylus brookii complex (Squamata: Gekkonidae), Org. Divers. Evol., 16, 659, 10.1007/s13127-016-0271-9
Lanfear, 2012, PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses, Mol. Biol. Evol., 29, 1695, 10.1093/molbev/mss020
Leache, 2010, Bayesian species delimitation in West African forest geckos (Hemidactylus fasciatus), Proc. Biol. Sci., 277, 3071, 10.1098/rspb.2010.0662
Marin, 2013, Tracing the history and biogeography of the Australian blindsnake radiation, J. Biogeogr., 40, 928, 10.1111/jbi.12045
Mayhew, 2008, A long-term association between global temperature and biodiversity, origination and extinction in the fossil record, Proc. Biol. Sci., 275, 47, 10.1098/rspb.2007.1302
Meng, 1998, Faunal turnovers of Palaeogene mammals from the Mongolian Plateau, Taprobanica, 394, 364
Mirza, 2014, A new cryptic species of gecko of the genus Hemidactylus Oken 1817 (Reptilia: Gekkonidae) from southern India, Taprobanica, 06, 12, 10.4038/tapro.v6i1.7056
Mirza, 2018, A new cryptic species of ground-dwelling Hemidactylus (Squamata: Gekkonidae) from southern India, Phyllomedusa, 17, 169, 10.11606/issn.2316-9079.v17i2p169-180
Mirza, 2017, A new large species of gecko of the genus Hemidactylus Oken, 1817 (Reptilia: Sauria: Gekkonidae) from the Eastern Ghats, India, Comptes Rendus Biologies, 1–11
Mirza, 2018, First appearance deceives many: disentangling the Hemidactylus triedrus species complex using an integrated approach, PeerJ, 6, e5341, 10.7717/peerj.5341
Mirza, 2017, A new rupicolous species of gecko of the genus Hemidactylus Oken, 1817 from the Satpura Hills, Central India, Amphib. Reptile Conse., 11, 51
Molnar, P., Rajagopalan, B., 2012. Late Miocene upward and outward growth of eastern Tibet and decreasing monsoon rainfall over the northwestern Indian subcontinent since ~ 10 Ma. Geophys. Res. Lett. doi: http://doi.org/10.1029/2012GL051305.
Morley, 2000
Murthy, 2014, A new rock dwelling Hemidactylus (Squamata: Gekkonidae) from Chhattisgarh, India, Zootaxa, 4021, 334, 10.11646/zootaxa.4021.2.5
Nielsen, 2011, New Zealand geckos (Diplodactylidae): Cryptic diversity in a post-Gondwanan lineage with trans-Tasman affinities, Mol. phylogenet. Evol., 59, 1, 10.1016/j.ympev.2010.12.007
Oliver, 2017, Phylogenetic evidence for mid-Cenozoic turnover of a diverse continental biota, Nat. Ecol. Evol., 1, 1896, 10.1038/s41559-017-0355-8
Passchier, 2013, Early Eocene to middle Miocene cooling and aridification of East Antarctica, Geochem. Geophy. Geosyst., 14, 1399, 10.1002/ggge.20106
Pennington, 2006, Insights into the historical construction of species-rich biomes from dated plant phylogenies, neutral ecological theory and phylogenetic community structure, New Phytol., 172, 605, 10.1111/j.1469-8137.2006.01902.x
Phillimore, 2008, Density-dependent cladogenesis in birds, Plos. Biol., 6, 10.1371/journal.pbio.0060071
Pound, 2012, Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97–5.33 Ma), Earth-Science Rev., 112, 1, 10.1016/j.earscirev.2012.02.005
Powney, 2010, Hot, dry and different: Australian lizard richness is unlike that of mammals, amphibians and birds, Global Ecol. Biogeogr., 19, 386, 10.1111/j.1466-8238.2009.00521.x
Prasad, 2009, Evidence of late Palaeocene-early Eocene equatorial rain forest refugia in southern Western Ghats, India, J. Biosci., 34, 777, 10.1007/s12038-009-0062-y
Prothero, 1994, The late Eocene–Oligocene extinctions, Annu. Rev. Earth Planet. Sci., 22, 145, 10.1146/annurev.ea.22.050194.001045
Prothero, 2014
Pybus, 2000, Testing macro-evolutionary models using incomplete molecular phylogenies, Proc. Biol. Sci., 267, 2267, 10.1098/rspb.2000.1278
Pyron, 2013, A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes, BMC Evol. Biol., 13, 93, 10.1186/1471-2148-13-93
Rabosky, 2013, Diversity-dependence, ecological speciation, and the role of competition in macroevolution, Annu. Rev. Ecol. Evol. Syst., 44, 481, 10.1146/annurev-ecolsys-110512-135800
Rabosky, 2015, Species richness at continental scales is dominated by ecological limits, Am. Nat., 185, 572, 10.1086/680850
Rabosky, 2008, Density-dependent diversification in North American wood warblers, Proc. Biol. Sci., 275, 2363, 10.1098/rspb.2008.0630
Rabosky, 2008, Explosive evolutionary radiations: decreasing speciation or increasing extinction through time?, Evolution, 62, 1866, 10.1111/j.1558-5646.2008.00409.x
Revell, 2012, phytools: An R package for phylogenetic comparative biology (and other things), Methods Ecol. Evol., 3, 217, 10.1111/j.2041-210X.2011.00169.x
Richardson, 2001, Rapid and recent origin of species richness in the Cape flora of South Africa, Nature, 412, 35084067, 10.1038/35084067
Roll, U., Feldman, A., Novosolov, M., Allison, A., Bauer, A.M., Bernard, R., Böhm, M., Castro-Herrera, F., Chirio, L., Ben Collen, Colli, G.R., Dabool, L., Das, I., Doan, T.M., Grismer, L.L., Hoogmoed, M., Itescu, Y., Kraus, F., LeBreton, M., Lewin, A., Martins, M., Maza, E., Meirte, D., Nagy, Z.T., de C Nogueira, C., Pauwels, O.S.G., Pincheira-Donoso, D., Powney, G.D., SINDACO, R., Tallowin, O.J.S., Torres-Carvajal, O., Trape, J.-F., Vidan, E., Uetz, P., Wagner, P., Wang, Y., Orme, C.D.L., Grenyer, R., Meiri, S., 2017. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat Ecol. Evol. 1, 1677–1682. doi: http://doi.org/10.1038/s41559-017-0332-2.
Ronquist, 2012, MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space, Syst. Biol., 61, 539, 10.1093/sysbio/sys029
Silvestro, 2012, raxmlGUI: a graphical front-end for RAxML, Org. Divers. Evol., 12, 335, 10.1007/s13127-011-0056-0
Champion, S.H., Seth, S.K. 1968. A revised survey of the forest types of India.
Srikanthan, 2018, A distinct new species of riparian rock-dwelling gecko (Genus: Hemidactylus) from the southern Western Ghats, Zootaxa, 4434, 141, 10.11646/zootaxa.4434.1.9
Srinivasulu, 2018, A new cryptic rock-dwelling Hemidactylus Oken, 1817 (Squamata: Gekkonidae) from northern Karnataka, India, Zootaxa, 4444, 25, 10.11646/zootaxa.4444.1.2
Srinivasulu, 2014
Stadler, 2011, Mammalian phylogeny reveals recent diversification rate shifts, Proc. Natl. Acad. Sci. USA, 108, 6187, 10.1073/pnas.1016876108
Stamatakis, 2006, RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models, Bioinformatics, 22, 2688, 10.1093/bioinformatics/btl446
Sun, 2014, Synchronous turnover of flora, fauna, and climate at the Eocene–Oligocene Boundary in Asia, Sci. Rep., 4, 1, 10.1038/srep07463
Tamura, 2011, MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 28, 2731, 10.1093/molbev/msr121
Tang, 2013, A palynological insight into the Miocene aridification in the Eurasian interior, Palaeoworld, 22, 77, 10.1016/j.palwor.2013.05.001
R Core Team, 2014
Thompson, 1994, CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 22, 4673, 10.1093/nar/22.22.4673
Vijayakumar, 2016, Glaciations, gradients, and geography: multiple drivers of diversification of bush frogs in the Western Ghats Escarpment, Proc. Biol. Sci., 283, 10.1098/rspb.2016.1011
Wade, 2012, Multiproxy record of abrupt sea-surface cooling across the Eocene–Oligocene transition in the Gulf of Mexico, Geol., 40, 159, 10.1130/G32577.1
Wagner, 2014, Cichlid species-area relationships are shaped by adaptive radiations that scale with area, Ecol. Lett., 17, 583, 10.1111/ele.12260
Wiens, 2013, Diversity and niche evolution along aridity gradients in North American lizards (Phrynosomatidae), Evolution, 67, 1715, 10.1111/evo.12053
Yang, 2015, The BPP program for species tree estimation and species delimitation, Curr. Zool., 61, 854, 10.1093/czoolo/61.5.854
Yang, 2014, Unguided species delimitation using DNA sequence data from multiple Loci, Mol. Biol. Evol., 31, 3125, 10.1093/molbev/msu279
Zachos, 2001, Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686, 10.1126/science.1059412
Zhang, 2012, Link between global cooling and mammalian transformation across the Eocene–Oligocene boundary in the continental interior of Asia, Int. J. Earth. Sci., 101, 2193, 10.1007/s00531-012-0776-1