Eocene–Oligocene cooling and the diversification of Hemidactylus geckos in Peninsular India

Molecular Phylogenetics and Evolution - Tập 142 - Trang 106637 - 2020
Aparna Lajmi1,2, Praveen K. Karanth1
1Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India
2Institute of Evolution, Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel

Tài liệu tham khảo

Abels, 2010, Step-wise change of Asian interior climate preceding the Eocene–Oligocene Transition (EOT), Palaeogeog. Palaeoclim. Palaeoecol., 299, 399, 10.1016/j.palaeo.2010.11.028 Agarwal, 2019, An expanded ND2 phylogeny of the brookii and prashadi groups with the description of three new Indian Hemidactylus Oken (Squamata: Gekkonidae), Zootaxa, 4619, 431, 10.11646/zootaxa.4619.3.2 Agarwal, 2014, Insights into Himalayan biogeography from geckos: a molecular phylogeny of Cyrtodactylus (Squamata: Gekkonidae), Mol. phylogenet. Evol., 80, 145, 10.1016/j.ympev.2014.07.018 Agarwal, 2014, Cryptic species and Miocene diversification of Palaearctic naked-toed geckos (Squamata: Gekkonidae) in the Indian dry zone, Zool. Scr., 43, 455, 10.1111/zsc.12062 Agarwal, 2011, A new cryptic rock-dwelling Hemidactylus (Squamata: Gekkonidae) from south India, Zootaxa, 2765, 21, 10.11646/zootaxa.2765.1.2 Agarwal, 2015, A phylogeny of the only ground-dwelling radiation of Cyrtodactylus (Squamata, Gekkonidae): diversification of Geckoella across peninsular India and Sri Lanka, Mol. phylogenet. Evol., 82, 193, 10.1016/j.ympev.2014.09.016 Agarwal, 2017, A phylogeny of open-habitat lizards (Squamata: Lacertidae: Ophisops) supports the antiquity of Indian grassy biomes, J. Biogeogr., 82, 193 Bansal, 2013, Phylogenetic analysis and molecular dating suggest that Hemidactylus anamallensis is not a member of the Hemidactylus radiation and has an ancient Late Cretaceous origin, PLoS One, 8, 10.1371/journal.pone.0060615 Bansal, 2010, Molecular phylogeny of Hemidactylus geckos (Squamata: Gekkonidae) of the Indian subcontinent reveals a unique Indian radiation and an Indian origin of Asian house geckos, Mol. phylogenet. Evol., 57, 459, 10.1016/j.ympev.2010.06.008 Bauer, 2008, On the systematics of the gekkonid genus Teratolepis Günther, 1869: another one bites the dust, Hamadryad, 33, 13 Bauer, 2010, Molecular evidence for the taxonomic status of Hemidactylus brookii group taxa (Squamata: Gekkonidae), Herpetol. J., 20, 129 Bauer, 2010, South Asia supports a major endemic radiation of Hemidactylus geckos, Mol. phylogenet. Evol., 57, 343, 10.1016/j.ympev.2010.06.014 Becerra, 2005, Timing the origin and expansion of the Mexican tropical dry forest, Proc. Natl. Acad. Sci. USA, 102, 10919, 10.1073/pnas.0409127102 Brennan, 2017, Mass turnover and recovery dynamics of a diverse Australian continental radiation, Evolution, 71, 1352, 10.1111/evo.13207 Burbrink, 2012, Evidence for determinism in species diversification and contingency in phenotypic evolution during adaptive radiation, Proc. Biol. Sci., 279, 4817, 10.1098/rspb.2012.1669 Byrne, 2011, Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota, J. Biogeogr., 38, 1635, 10.1111/j.1365-2699.2011.02535.x Carranza, 2006, Systematics, biogeography, and evolution of Hemidactylus geckos (Reptilia: Gekkonidae) elucidated using mitochondrial DNA sequences, Mol. phylogenet. Evol., 38, 531, 10.1016/j.ympev.2005.07.012 Cerling, 1997, Global vegetation change through the Miocene/Pliocene boundary, Nature, 389, 153, 10.1038/38229 Chaitanya, 2018, A new cryptic, rupicolous species of Hemidactylus Oken, 1817 (Squamata: Gekkonidae) from Meghamalai, Tamil Nadu, India, Zootaxa, 4374, 49, 10.11646/zootaxa.4374.1.3 Clift, 2008, Correlation of Himalayan exhumation rates and Asian monsoon intensity, Nat. Geosci., 1, 875, 10.1038/ngeo351 Cyriac, 2017, Paleoclimate determines diversification patterns in the fossorial snake family Uropeltidae Cuvier, 1829, Mol. phylogenet. Evol., 116, 97, 10.1016/j.ympev.2017.08.017 Dandge, 2015, A new species of rupicolus gecko of the genus Hemidactylus Oken, 1817 (Reptilia: Squamata: Gekkonidae) from Maharashtra, central India, Russ. J. Herpetol, 22 Davis, 2005, Explosive radiation of Malpighiales supports a mid-cretaceous origin of modern tropical rain forests, Am. Nat., 165, E36, 10.1086/428296 Deepak, 2018, Aridification driven diversification of fan-throated lizards from the Indian subcontinent, Mol. Phylogenet. Evol., 120, 53, 10.1016/j.ympev.2017.11.016 Donoghue, 2014, Biome shifts and niche evolution in plants, Annu. Rev. Ecol. Evol. Syst., 45, 547, 10.1146/annurev-ecolsys-120213-091905 Drummond, 2012, Bayesian phylogenetics with BEAUti and the BEAST 1.7, Mol. Biol. Evol., 29, 1969, 10.1093/molbev/mss075 Dupont-Nivet, 2007, Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition, Nature, 445, 635, 10.1038/nature05516 Edwards, E.J., Osborne, C.P., Strömberg, C.A.E., Smith, S.A., C4 Grasses Consortium, Bond, W.J., Christin, P.-A., Cousins, A.B., Duvall, M.R., Fox, D.L., Freckleton, R.P., Ghannoum, O., Hartwell, J., Huang, Y., Janis, C.M., Keeley, J.E., Kellogg, E.A., Knapp, A.K., Leakey, A.D.B., Nelson, D.M., Saarela, J.M., Sage, R.F., Sala, O.E., Salamin, N., Still, C.J., Tipple, B., 2010. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328, 587–591. doi: http://doi.org/10.1126/science.1177216. Edwards, 2009, Phylogenetic analyses reveal the shady history of C4 grasses Proc, Natl. Acad. Sci., 107, 2532, 10.1073/pnas.0909672107 Erwin, 2009, Climate as a driver of evolutionary change, Curr. Biol., 19, R575, 10.1016/j.cub.2009.05.047 Etienne, 2012, A conceptual and statistical framework for adaptive radiations with a key role for diversity dependence, Am. Nat., 10.1086/667574 Ezard, 2011, Interplay between changing climate and species’ ecology drives macroevolutionary dynamics, Science, 332, 349, 10.1126/science.1203060 Fick, 2017, WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas, Int. J. Climatol., 37, 4302, 10.1002/joc.5086 Fordyce, 2010, Interpreting the γ statistic in phylogenetic diversification rate studies: A rate decrease does not necessarily indicate an early burst, PLoS One, 5, e11781, 10.1371/journal.pone.0011781 Fortelius, 2006, Late Miocene and Pliocene large land mammals and climatic changes in Eurasia, Palaeogeog. Palaeoclim. Palaeoecol., 238, 219, 10.1016/j.palaeo.2006.03.042 Gaikwad, 2009, Notes on the distribution, natural history and variation of Hemidactylus albofasciatus (Grandison and Soman, 1963) (Squamata: Gekkonidae), J. Bombay Nat. History Soc., 106, 305 Gamble, 2012, Repeated origin and loss of adhesive toepads in geckos, PLoS One, 7, 10.1371/journal.pone.0039429 Gamble, 2008, Tertiary climate change and the diversification of the Amazonian gecko genus Gonatodes (Sphaerodactylidae, Squamata), Mol. phylogenet. Evol., 46, 269, 10.1016/j.ympev.2007.08.013 Giri, 2006, Notes on the distribution, natural history and variation of Hemidactylus prashadi Smith, 1935, Hamadryad, 30, 55 Giri, 2008, A new rock-dwelling Hemidactylus (Squamata: Gekkonidae) from Maharashtra, India, Hamadryad, 32, 25 Giri, 2008, A new ground-dwelling Hemidactylus (Squamata: Gekkonidae) from Maharashtra, with a key to the Hemidactylus of India, Zootaxa, 1700, 21, 10.11646/zootaxa.1700.1.2 Giri, 2017, A new species of large-bodied, tuberculate Hemidactylus Oken (Squamata: Gekkonidae) from the Eastern Ghats, India, Zootaxa, 4347, 331, 10.11646/zootaxa.4347.2.8 Gower, 2016, The role of wet-zone fragmentation in shaping biodiversity patterns in peninsular India: insights from the caecilian amphibian Gegeneophis, J. Biogeogr., 43, 1091, 10.1111/jbi.12710 Harmon, 2008, GEIGER: investigating evolutionary radiations, Bioinformatics, 24, 129, 10.1093/bioinformatics/btm538 Heinicke, 2011, Phylogeny of a trans-Wallacean radiation (Squamata, Gekkonidae, Gehyra) supports a single early colonization of Australia, Zoologica Scripta, 40, 584, 10.1111/j.1463-6409.2011.00495.x Hoorn, 2012, A late Eocene palynological record of climate change and Tibetan Plateau uplift (Xining Basin, China), Palaeogeog. Palaeoclim. Palaeoecol., 344–345, 16, 10.1016/j.palaeo.2012.05.011 Hren, 2013, Terrestrial cooling in Northern Europe during the Eocene–Oligocene transition, Proc. Natl. Acad. Sci. USA, 110, 7562, 10.1073/pnas.1210930110 Huang, 2016, The species versus subspecies conundrum: quantitative delimitation from integrating multiple data types within a single Bayesian approach in Hercules beetles, Syst. Biol., 65, 685, 10.1093/sysbio/syv119 Ivany, 2000, Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary, Nature, 407, 887, 10.1038/35038044 Kapli, 2017, Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo, Bioinformatics, 33, 1630, 10.1093/bioinformatics/btx025 Karanth, 2003, Evolution of disjunct distributions among wet-zone species of the Indian subcontinent, Curr. Sci., 85, 1276 Kargaranbafghi, 2017, Tectonic forcing to global cooling and aridification at the Eocene–Oligocene transition in the Iranian plateau, Global Planet. Change Lajmi, 2019, Phylogeny and biogeography of the endemic Hemidactylus geckos of the Indian subregion suggest multiple dispersals from Peninsular India to Sri Lanka, Zool. J. Linn. Soc., 186, 286, 10.1093/zoolinnean/zly047 Lajmi, 2016, Molecular data in conjunction with morphology help resolve the Hemidactylus brookii complex (Squamata: Gekkonidae), Org. Divers. Evol., 16, 659, 10.1007/s13127-016-0271-9 Lanfear, 2012, PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses, Mol. Biol. Evol., 29, 1695, 10.1093/molbev/mss020 Leache, 2010, Bayesian species delimitation in West African forest geckos (Hemidactylus fasciatus), Proc. Biol. Sci., 277, 3071, 10.1098/rspb.2010.0662 Marin, 2013, Tracing the history and biogeography of the Australian blindsnake radiation, J. Biogeogr., 40, 928, 10.1111/jbi.12045 Mayhew, 2008, A long-term association between global temperature and biodiversity, origination and extinction in the fossil record, Proc. Biol. Sci., 275, 47, 10.1098/rspb.2007.1302 Meng, 1998, Faunal turnovers of Palaeogene mammals from the Mongolian Plateau, Taprobanica, 394, 364 Mirza, 2014, A new cryptic species of gecko of the genus Hemidactylus Oken 1817 (Reptilia: Gekkonidae) from southern India, Taprobanica, 06, 12, 10.4038/tapro.v6i1.7056 Mirza, 2018, A new cryptic species of ground-dwelling Hemidactylus (Squamata: Gekkonidae) from southern India, Phyllomedusa, 17, 169, 10.11606/issn.2316-9079.v17i2p169-180 Mirza, 2017, A new large species of gecko of the genus Hemidactylus Oken, 1817 (Reptilia: Sauria: Gekkonidae) from the Eastern Ghats, India, Comptes Rendus Biologies, 1–11 Mirza, 2018, First appearance deceives many: disentangling the Hemidactylus triedrus species complex using an integrated approach, PeerJ, 6, e5341, 10.7717/peerj.5341 Mirza, 2017, A new rupicolous species of gecko of the genus Hemidactylus Oken, 1817 from the Satpura Hills, Central India, Amphib. Reptile Conse., 11, 51 Molnar, P., Rajagopalan, B., 2012. Late Miocene upward and outward growth of eastern Tibet and decreasing monsoon rainfall over the northwestern Indian subcontinent since ~ 10 Ma. Geophys. Res. Lett. doi: http://doi.org/10.1029/2012GL051305. Morley, 2000 Murthy, 2014, A new rock dwelling Hemidactylus (Squamata: Gekkonidae) from Chhattisgarh, India, Zootaxa, 4021, 334, 10.11646/zootaxa.4021.2.5 Nielsen, 2011, New Zealand geckos (Diplodactylidae): Cryptic diversity in a post-Gondwanan lineage with trans-Tasman affinities, Mol. phylogenet. Evol., 59, 1, 10.1016/j.ympev.2010.12.007 Oliver, 2017, Phylogenetic evidence for mid-Cenozoic turnover of a diverse continental biota, Nat. Ecol. Evol., 1, 1896, 10.1038/s41559-017-0355-8 Passchier, 2013, Early Eocene to middle Miocene cooling and aridification of East Antarctica, Geochem. Geophy. Geosyst., 14, 1399, 10.1002/ggge.20106 Pennington, 2006, Insights into the historical construction of species-rich biomes from dated plant phylogenies, neutral ecological theory and phylogenetic community structure, New Phytol., 172, 605, 10.1111/j.1469-8137.2006.01902.x Phillimore, 2008, Density-dependent cladogenesis in birds, Plos. Biol., 6, 10.1371/journal.pbio.0060071 Pound, 2012, Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97–5.33 Ma), Earth-Science Rev., 112, 1, 10.1016/j.earscirev.2012.02.005 Powney, 2010, Hot, dry and different: Australian lizard richness is unlike that of mammals, amphibians and birds, Global Ecol. Biogeogr., 19, 386, 10.1111/j.1466-8238.2009.00521.x Prasad, 2009, Evidence of late Palaeocene-early Eocene equatorial rain forest refugia in southern Western Ghats, India, J. Biosci., 34, 777, 10.1007/s12038-009-0062-y Prothero, 1994, The late Eocene–Oligocene extinctions, Annu. Rev. Earth Planet. Sci., 22, 145, 10.1146/annurev.ea.22.050194.001045 Prothero, 2014 Pybus, 2000, Testing macro-evolutionary models using incomplete molecular phylogenies, Proc. Biol. Sci., 267, 2267, 10.1098/rspb.2000.1278 Pyron, 2013, A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes, BMC Evol. Biol., 13, 93, 10.1186/1471-2148-13-93 Rabosky, 2013, Diversity-dependence, ecological speciation, and the role of competition in macroevolution, Annu. Rev. Ecol. Evol. Syst., 44, 481, 10.1146/annurev-ecolsys-110512-135800 Rabosky, 2015, Species richness at continental scales is dominated by ecological limits, Am. Nat., 185, 572, 10.1086/680850 Rabosky, 2008, Density-dependent diversification in North American wood warblers, Proc. Biol. Sci., 275, 2363, 10.1098/rspb.2008.0630 Rabosky, 2008, Explosive evolutionary radiations: decreasing speciation or increasing extinction through time?, Evolution, 62, 1866, 10.1111/j.1558-5646.2008.00409.x Revell, 2012, phytools: An R package for phylogenetic comparative biology (and other things), Methods Ecol. Evol., 3, 217, 10.1111/j.2041-210X.2011.00169.x Richardson, 2001, Rapid and recent origin of species richness in the Cape flora of South Africa, Nature, 412, 35084067, 10.1038/35084067 Roll, U., Feldman, A., Novosolov, M., Allison, A., Bauer, A.M., Bernard, R., Böhm, M., Castro-Herrera, F., Chirio, L., Ben Collen, Colli, G.R., Dabool, L., Das, I., Doan, T.M., Grismer, L.L., Hoogmoed, M., Itescu, Y., Kraus, F., LeBreton, M., Lewin, A., Martins, M., Maza, E., Meirte, D., Nagy, Z.T., de C Nogueira, C., Pauwels, O.S.G., Pincheira-Donoso, D., Powney, G.D., SINDACO, R., Tallowin, O.J.S., Torres-Carvajal, O., Trape, J.-F., Vidan, E., Uetz, P., Wagner, P., Wang, Y., Orme, C.D.L., Grenyer, R., Meiri, S., 2017. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat Ecol. Evol. 1, 1677–1682. doi: http://doi.org/10.1038/s41559-017-0332-2. Ronquist, 2012, MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space, Syst. Biol., 61, 539, 10.1093/sysbio/sys029 Silvestro, 2012, raxmlGUI: a graphical front-end for RAxML, Org. Divers. Evol., 12, 335, 10.1007/s13127-011-0056-0 Champion, S.H., Seth, S.K. 1968. A revised survey of the forest types of India. Srikanthan, 2018, A distinct new species of riparian rock-dwelling gecko (Genus: Hemidactylus) from the southern Western Ghats, Zootaxa, 4434, 141, 10.11646/zootaxa.4434.1.9 Srinivasulu, 2018, A new cryptic rock-dwelling Hemidactylus Oken, 1817 (Squamata: Gekkonidae) from northern Karnataka, India, Zootaxa, 4444, 25, 10.11646/zootaxa.4444.1.2 Srinivasulu, 2014 Stadler, 2011, Mammalian phylogeny reveals recent diversification rate shifts, Proc. Natl. Acad. Sci. USA, 108, 6187, 10.1073/pnas.1016876108 Stamatakis, 2006, RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models, Bioinformatics, 22, 2688, 10.1093/bioinformatics/btl446 Sun, 2014, Synchronous turnover of flora, fauna, and climate at the Eocene–Oligocene Boundary in Asia, Sci. Rep., 4, 1, 10.1038/srep07463 Tamura, 2011, MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 28, 2731, 10.1093/molbev/msr121 Tang, 2013, A palynological insight into the Miocene aridification in the Eurasian interior, Palaeoworld, 22, 77, 10.1016/j.palwor.2013.05.001 R Core Team, 2014 Thompson, 1994, CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 22, 4673, 10.1093/nar/22.22.4673 Vijayakumar, 2016, Glaciations, gradients, and geography: multiple drivers of diversification of bush frogs in the Western Ghats Escarpment, Proc. Biol. Sci., 283, 10.1098/rspb.2016.1011 Wade, 2012, Multiproxy record of abrupt sea-surface cooling across the Eocene–Oligocene transition in the Gulf of Mexico, Geol., 40, 159, 10.1130/G32577.1 Wagner, 2014, Cichlid species-area relationships are shaped by adaptive radiations that scale with area, Ecol. Lett., 17, 583, 10.1111/ele.12260 Wiens, 2013, Diversity and niche evolution along aridity gradients in North American lizards (Phrynosomatidae), Evolution, 67, 1715, 10.1111/evo.12053 Yang, 2015, The BPP program for species tree estimation and species delimitation, Curr. Zool., 61, 854, 10.1093/czoolo/61.5.854 Yang, 2014, Unguided species delimitation using DNA sequence data from multiple Loci, Mol. Biol. Evol., 31, 3125, 10.1093/molbev/msu279 Zachos, 2001, Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686, 10.1126/science.1059412 Zhang, 2012, Link between global cooling and mammalian transformation across the Eocene–Oligocene boundary in the continental interior of Asia, Int. J. Earth. Sci., 101, 2193, 10.1007/s00531-012-0776-1