Characteristics of warm mixed asphalt modified by waste polymer and nano-silica
Tóm tắt
The current research studied the characteristics of warm mixture asphalt (WMA) contain Polypropylene polymer (PP) and Nano- silica particles (NS). Two kinds of WMA were used: unmodified WMA and modified WMA contain 3% PP and NS (2–5) % by total weight of asphalt. The performance tests conducted to evaluate performance are: moisture resistance test, rutting resistance test, and fatigue resistance test. The obtained results refers that addition Nano- silica and Polypropylene improves performance of WMA. Also the results reveals that addition of Nano- silica and polypropylene as asphalt modifiers increase durability and improve performance of warm mixtures asphalt.
Tài liệu tham khảo
R.M. Anderson, G. Baumgardner, R. May, Reinke, G, Engineering properties, emissions, and field performance of warm mix asphalt technology, National Cooperative Highway Research Program (NCHRP), Washington DC, USA, 2008.
L. Robjent, W. Dosh, Warm-mix asphalt for rural county roads, Cold Regions Engineering ASCE, Duluth, MN, USA, 2009, pp. 438–454.
W. Zhao, F. Xiao, S.N. Amirkhaman, B.J. Putman, Characterization of rutting performance of warm additive modified asphalt mixtures, Constr. Buil. Mater. 31 (2012), 265–272.
R. Vidal, E. Moliner, G. Martinez, M.C. Rubio, Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement, Resour. Conserv. Recycl. 74 (2013), 101–114.
R.B. Mallick, M. Tao, B. Chen, K. O’ Sullivan, P. Cacciatore, Practical method to understand the effect of aggregate drying on the moisture content of hot-mix asphalt, Transp. Res. Rec. 2208 (2011), 90–96. https://doi.org/10.3141/2F2208-12
K. Kanitpong, N. Charoentham, S. Likitlersuang, Investigation on the effects of gradation and aggregate type to moisture damage of warm mix asphalt modified with Sasobit, Int. J. Pavement Eng. 13 (2012), 451–458. https://doi.org/10.1080/10298436.2011.565058
A. Ali, A. Abbas, M. Nazzal, A. Alhasan, A. Roy, D. Powers, Workability evaluation of foamed warm mix asphalt, J Mater Civ Eng. 26 (6) (2014)
B. Sengöz, A. Topal, C. Gorkem, Evaluation of moisture characteristics of warm mix asphalt involving natural zeolite, Road Mater. Pavement Des. 14 (4) (2013) 933–945. https://doi.org/10.1080/14680629.2013.817352
W. Barthel, J.P. Marchand, M.V. Devivere, Warm asphalt mixes by adding a synthetic zeolite, Eurasphalt Eurobitume Congress, Eurasphalt Eurobitume Congress, Vienna, Austria, 2004.
B. D. Prowell, G. C. Hurley, E. Crews, Field performance of warm-mix asphalt at the NCAT test track, 86th Annual Meeting of the Transportation Research Board, Transportation Research Board, Washington DC, USA, 2007.
J. Yan, Y. Cao, T. Zhu, M. Cai, Z. Cao, W. Huang, Q. Dong, Shanghai experience with warm mix asphalt, Geo Shanghai 2010 International Conference, ASCE, Shanghai, China, 2010, pp. 97–102.
Y. Kim, J. Zhang, H. Ban, Moisture damage characterization of warm-mix asphalt mixtures based on laboratory-field evaluation, Constr. Build. Mater. 31 (2012), 204–211. https://doi.org/10.1016/j.conbuildmat.2011.12.085
C. S. Bindu, M. S. Joseph, P. S. Sibinesh, S. G. S. Sivan, Performance evaluation of warm mix asphalt using natural rubber modified bitumen and cashew nut shell liquid, Inter. J. Pavement Res. Technol. 13 (4) (2020) 442–453. https://doi.org/10.1007/s42947-020-0241-7
A. Topal, B. Sengoz, B.V. Kok, M. Yilmaz, P.A. Dokandari, J. Oner, D. Kaya, Evaluation of mixture characteristics of warm mix asphalt involving natural and synthetic zeolite additives, Constr. Build. Mater. 57 (2014), 38–44. https://doi.org/10.1016/j.conbuildmat.2014.01.093
A. Vaitkus, D. Čygas, A. Laurinavičius, Z. Perveneckas, Analysis and evaluation of possibilities for the use of warm mix asphalt in Lithuania, Baltic J. Road Bridge Eng. 4 (2) (2009) 80–86.
S.D. Diefenderfer, K.K. McGhee, B.M. Donaldson, Installation of warm mix asphalt projects in Virginia. Final report: VTRC 07–25. Virginia Transportation Research Council, Charlottesville, VA, USA, 2007.
A. Kvasnak, R. West, G. Hurley, B. Prowell, D. Jones, T. Kreich, L. Osborn, K. Peregrine, B. Frank, Engineering properties, emissions, and field performance of warm mix asphalt technology. Interim Report Volume I Literature Review for NCHRP Project 09-47A. Transportation Research Board, National Academies, Washington DC, USA, 2009.
R. West, Field testing of warm mix asphalt, Warm Mix Asphalt Recycling Symposium, Sacramento, CA, USA, 2009.
Z. Arega, A. Bhasin, A. Motamed, F. Turner, Influence of warm-mix additives and reduced aging on the rheology of asphalt binders with different natural wax contents, J. Mater. Civ. Eng. 23 (10) (2011) 1453–1459.
V.S. Punith, F. Xiao, S.N. Amirkhanian, Effects of moist aggregates on the performance of warm mix asphalt mixtures containing non-foaming additives, J. Test. Eval. 39 (5) (2011) 1–11.
A. Ali, A. Abbas, M. Nazzal, A. Alhasan, A. Roy, D. Powers, Effect of temperature reduction, foaming water content, and aggregate moisture content on performance of foamed warm mix asphalt, Constr. Build. Mater. 48 (2013), 1058–1066. https://doi.org/10.1016/j.conbuildmat.2013.07.081
J.D. Doyle, I.L. Howard, Rutting and moisture damage resistance of high reclaimed asphalt pavement warm mixed asphalt: loaded wheel tracking vs. conventional methods, Road Mater. Pavement Des. 14 (2) (2013) 148–172.
S. Kim, J. Park, S. Lee, K.W. Kim, Performance of modified WMA Mixtures prepared using the same class PG binders of HMA mixtures, J. Test. Eval. 42 (2) (2014) 1–10.
N. Bala, I. Kamaruddin, M. Napiah, N. Danlami, Rheological and rutting evaluation of composite Nano-silica/polyethylene modified bitumen, Inter. J. Advanced and Appl. Sci. 4 (10) (2017) 165–174.
M. Arabani, S.A. Tahami, G.H. Hamedi, Performance evaluation of dry process crumb rubber-modified asphalt mixtures with nanomaterial, Road Mater. Pavement Des. 19 (5) (2017) 1–18 https://doi.org/10.1080/14680629.2017.1302356
R. Yu, C. Fang, P. Liu, X. Liu, Y. Li, Storage stability and rheological properties of asphalt modified with waste packaging polyethylene and organic montmorillonite, Appl. Clay, Sci. 104 (2015), 1–7
M. Enieb, A. Diab, Characteristics of asphalt binder and mixture containing Nano silica, Inter. J. Pavement Res. Technol. 10 (2) (2017) 148–157. https://doi.org/10.1016/j.ijprt.2016.11.009
P.C. LeBaron, Z. Wang, T.J, Pinnavaia Polymer-layered silicate nanocomposites: an overview, Appl. Clay Sci. 15 (2) (1999) 11–29
S.S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing Program, Polym, Sci. 28 (11) (2003) 1539–1641.
A.I. Al-Hadidy, T. Yi-Qiu, New Technical Method for Production Homogenous and Storage Stable Polymer Modified Asphalt. In Plan, Build, and Manage Transportation Infrastructures in China Congress (ISSTP), Seventh International Conference of Chinese Transportation Professionals Congress (ICCTP), Shanghai, China, 2007.
P. Ahmedzade, K. Demirelli, T. Günay, F. Biryan, O. Alqudah, Effects of Waste Polypropylene Additive on the Properties of Bituminous Binder, Procedia Manuf. 2 (2015), 165–170.
H.I.A. Wahhab, M.A. Dalhat, M.A. Habib, Storage stability and high-temperature performance of asphalt binder modified with recycled plastic, Road Mater. Pavement Des. 18 (5) (2016) 1117–1134.
A. Buddhala, Z. Hossain, N.M. Wasiuddin, M. Zaman, E. A. O’Rear, Effects of an amine anti-stripping agent on moisture susceptibility of sasobit and aspha-min mixes by surface free energy analysis, J. Test. Eval. 40 (1) (2011) 1–9.
M. Arabani, H. Roshani, G.H. Hamedi, Estimating moisture sensitivity of warm mix asphalt modified with zycosoil as an antistrip agent using surface free energy method, J. Mater. Civ. Eng. 24 (7) (2012) 889–897.
F. Xiao, W. Zhao, T. Gandhi, S.N. Amirkhanian, Influence of antistripping additives on moisture susceptibility of warm mix asphalt mixtures, J. Mater Civil Eng, 22 (10) (2010) 1047–1055.
A. Diab, Z. You, H. Wang, Rheological evaluation of foamed WMA modified with Nano hydrated lime, Procedia Soc. Behav. Sci. 96 (2013), 2858–2866. https://doi.org/10.1016/j.sbspro.2013.08.318
Kavussi, A, Hashemian, L, Laboratory evaluation of moisture damage and rutting potential of WMA foam mixes, Int. J. Pavement Eng, 13 (5) (2012), 415–423. https://doi.org/10.1080/10298436.2011.597859
American Society for Testing and Materials, Test Method for Resistance of Plastic Flow of Bituminous Mixtures Using Marshall Apparatus. ASTM D1559-89. ASTM International, West Conshohocken, PA, USA, 1989.
American Association of State Highway and Transportation Officials, Standard Method of Test for Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage. AASHTO T283-14. AASHTO, Washington DC, USA, 2014.
American Association of State Highway and Transportation Officials, Standard Method of Test for Hamburg Wheel-Track Testing of Compacted Hot Mix Asphalt (HMA). AASHTO T324-04. AASHTO, Washington DC, USA, 2004.
American Association of State Highway and Transportation Officials, Standard Method of Test for Determining the Fatigue Life of Compacted Asphalt Mixtures Subjected to Repeated Flexural Bending. AASHTO T321-07. AASHTO, Washington DC, USA, 2007.
F. Xiao, V.S. Punith, B. Putman, S.N. Amirkhanian, Utilization of foaming technology in warm-mix-asphalt mixtures containing moist aggregates, J. Mater. Civ. Eng. 23 (9) (2011) 1328–1337.
F. Xiao, V.S. Punith, S.N. Amirkhanian, C. Thodesen, Improved resistance of long-term aged warm-mix asphalt to moisture damage containing moist aggregates, J. Mater. Civ. Eng. 25 (7) (2013) 913–922.
F. Xiao, V.S. Punith, B. Putman, Effect of compaction temperature on rutting and moisture resistance of foamed warm-mix-asphalt mixtures, J. Mater. Civ. Eng. 25 (9) (2013) 1344–1352.
N. Guo, Z. You, Y. Zhao, Y. Tan, A. Diab, Laboratory performance of warm mix asphalt containing recycled asphalt mixtures, Constr. Build. Mater. 24 (2010), 1060–1068.
S. M. Mirabdolazimi, A. H. Kargari M. Mazhari Pakenari, New achievement in moisture sensitivity of nano-silica modified asphalt mixture with a combined effect of bitumen type and traffic condition, Inter. J. Pavement Res. Technol. (2020) https://doi.org/10.1007/s42947-020-0043-y