Xác định một tập hợp nhỏ các gen được điều chỉnh chung trong rễ lúa phản ứng với vi khuẩn nốt rễ có lợi

Physiology and Molecular Biology of Plants - Tập 26 - Trang 2537-2551 - 2020
Marine Valette1, Marjolaine Rey1, Jeanne Doré1, Florence Gerin1, Florence Wisniewski-Dyé1
1Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgroSup, Université de Lyon, Université Lyon1, Villeurbanne, France

Tóm tắt

Vi khuẩn trong vùng rễ, dù là gây bệnh cho cây hay có lợi cho cây, được cho là được cây nhận diện như một mối đe dọa. Vi khuẩn thúc đẩy sự phát triển của thực vật (PGPR), chẳng hạn như nhiều chủng của chi Azospirillum được biết đến như là những chất kích thích chính cho các loại ngũ cốc, hợp tác với cây chủ và ảnh hưởng tích cực đến sự phát triển và sức khỏe của chúng. Một nghiên cứu trước đây về biểu đồ phiên mã rễ lúa, được thực hiện với hai giống lúa và hai chủng Azospirillum, đã tiết lộ phản ứng phụ thuộc vào chủng trong mối liên kết giữa lúa và Azospirillum và cho thấy chỉ một số ít gen, bao gồm một số gen liên quan đến cơ chế phòng thủ của cây, được điều chỉnh chung trong tất cả các điều kiện thử nghiệm. Tại đây, một tập hợp các gen đã được lựa chọn từ các nghiên cứu trước và sự biểu hiện của chúng được theo dõi bằng qRT-PCR trong rễ lúa được cấy với mười chủng PGPR được phân lập từ nhiều cây khác nhau và thuộc các chi khác nhau (Azospirillum, Herbaspirillum, Paraburkholderia). Một mẫu biểu hiện chung đã được làm nổi bật cho bốn gen được đề xuất là các dấu hiệu của tương tác giữa lúa và PGPR: hai gen liên quan đến sinh tổng hợp phytoalexin diterpenoid (OsDXS3 và OsDTC2) và một gen mã hóa cho một protein chưa được xác định (Os02g0582900) đã được PGPR kích thích một cách đáng kể trong khi một gen liên quan đến phòng thủ mã hóa cho một protein liên quan đến bệnh lý (PR1b, Os01g0382000) đã bị ức chế một cách đáng kể. Thú vị thay, sự tiếp xúc với một tác nhân gây bệnh ở lúa cũng kích hoạt sự biểu hiện của OsDXS3 trong khi sự biểu hiện của Os02g0582900 và PR1b lại bị giảm, cho thấy rằng những gen này có thể đóng một vai trò quan trọng trong các tương tác giữa lúa và vi khuẩn. Việc tích hợp các kết quả này với dữ liệu trước đó đã đưa chúng tôi đến việc đề xuất rằng con đường tín hiệu axit jasmonic có thể được kích hoạt trong rễ lúa sau khi cấy PGPR.

Từ khóa

#vi khuẩn nốt rễ #lúa #gen điều chỉnh #tương tác cây-vi khuẩn #sự phát triển thực vật

Tài liệu tham khảo

Ait Barka E, Gognies S, Nowak J, Audran J-C, Belarbi A (2002) Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control 24:135–142 Akatsuka T, Sekido H, Takeuchi S, Kono Y, Kodama O (1985) Novel phytoalexins (oryzalexins a, b and c) isolated from rice blast leaves infected with Pyricularia oryzae. Agric Biol Chem 49:1689–1701 Baldani VLD, de Alvarez MAB, Baldani JI, Döbereiner J (1986a) Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant Soil 90:37–40 Baldani JI, Baldani VLD, Seldin L, Dobereiner J (1986b) Characterization of Herbaspirillurn seropedicae gen. nov. sp. nov. a root-associated nitrogen-fixing bacterium. Int J Syst Bacteriol 36:86–93 Blanvillain-Baufumé S, Reschke M, Solé M, Auguy F, Doucoure H, Szurek B, Meynard D, Portefaix M, Cunnac S, Guiderdoni E, Boch J, Koebnik R (2017) Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. Plant Biotechnol J 15:306–317 Breitler J, Campa C, Georget F, Bertrand B, Etienne H (2016) A single-step method for RNA isolation from tropical crops in the field. Sci Rep 6:38368 Buscaill P, Rivas S (2014) Transcriptional control of plant defence responses. Curr Opin Plant Biol 20:35–46 Cartieaux F, Thibaud MC, Zimmerli L, Lessard P, Sarrobert C, David P, Gerbaud A, Robaglia C, Somerville S, Nussaume L (2003) Transcriptome analysis of Arabidopsis colonized by a plant-growth promoting rhizobacterium reveals a general effect on disease resistance. Plant J 36:177–188 Chamam A, Sanguin H, Bellvert F, Meiffren G, Comte G, Wisniewski-Dyé F, Bertrand C, Prigent-Combaret C (2013) Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum-Oryza sativa association. Phytochemistry 87:65–77 Chen C, Ané JM, Zhu H (2008) OsIPD3, an ortholog of the Medicago truncatula DMI3 interacting protein IPD3, is required for mycorrhizal symbiosis in rice. New Phytol 180:311–315 Chen X, Miché L, Sachs S, Wang Q, Buschart A, Yang H, Vera Cruz CM, Hurek T, Reinhold-Hurek B (2015) Rice responds to endophytic colonization which is independent of the common symbiotic signaling pathway. New Phytol 208:531–543 Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Barka EA (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693 Devescovi G, Bigirimana J, Degrassi G, Cabrio L, LiPuma JJ, Kim J, Hwang I, Venturi V (2007) Involvement of a quorum-sensing-regulated lipase secreted by a clinical isolate of Burkholderia glumae in severe disease symptoms in rice. Appl Environ Microbiol 73:4950–4958 Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. CRC Crit Rev Plant Sci 22:107–149 Drogue B, Sanguin H, Chamam A, Mozar M, Llauro C, Panaud O, Prigent-Combaret C, Picault N, Wisniewski-Dyé F (2014) Plant root transcriptome profiling reveals a strain-dependent response during Azospirillum-rice cooperation. Front Plant Sci 5:1–14 Egamberdieva D, Wirth SJ, Alqarawi AA, Abd-Allah EF, Hashem A (2017) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 8:2104 Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. Isolated from wild rice species. Appl Environ Microbiol 67:5285–5293 Gutjahr C, Banba M, Croset V, An K, Miyao A, An G, Hirochika H, Imaizumi-Anraku H, Paszkowski U (2008) Arbuscular mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway. Plant Cell 20:2989–3005 Ito Y, Kurata N (2006) Identification and characterization of cytokinin-signalling gene families in rice. Gene 382:57–65 Kang Y, Kim J, Kim S, Kim H, Lim JY, Kim M, Kwak J, Moon JS, Hwang I (2008) Proteomic analysis of the proteins regulated by HrpB from the plant pathogenic bacterium Burkholderia glumae. Proteomics 8:106–121 King E, Wallner A, Rimbault I, Barrachina A, Klonowska A, Moulin L, Czernic P (2019) Monitoring of rice transcriptional responses to contrasted colonizing patterns of phytobeneficial Burkholderia s.l. reveals a temporal shift in JA systemic response. Front Plant Sci 10:1141 Kost T, Stopnisek N, Agnoli K, Eberl L, Weisskopf L (2013) Oxalotrophy, a widespread trait of plant-associated Burkholderia species, is involved in successful root colonization of lupin and maize by Burkholderia phytofirmans. Front Microbiol 4:421 Kusajima M, Shima S, Fujita M, Minamisawa K, Che FS, Yamakawa H, Nakashita H (2020) Involvement of ethylene signaling in Azospirillum sp. B510-unduced disease resistance in rice. Biosci Biotechnol Biochem 82:1522–1526 Laborda P, Chen X, Wu GC, Wang SY, Lu XF, Ling J, Li KH, Liu FQ (2020) Lysobacter gummosus OH17 induces systemic resistance in Oryza sativa ‘Nipponbare’. Plant Pathol 69:838–848 Léon-Kloosterziel KM, Verhagen BWM, Keurentjes JJB, Vanpelt JA, Rep M, Vanloon LC, Pieterse CMJ (2005) Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle. Plant Mol Biol 57:731–748 Liang X, Chen X, Li C, Fan J, Guo Z (2017) Metabolic and transcriptional alternations for defense by interfering OsWRKY62 and OsWRKY76 transcriptions in rice. Sci Rep 7:1–15 Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408 MacDonald MJ, D’Cunha GB (2007) A modern view of phenylalanine ammonia lyase. Biochem Cell Biol 85:759 Marcel S, Sawers R, Oakeley E, Angliker H, Paszkowski U (2010) Tissue-adapted invasion strategies of the rice blast fungus Magnaporthe oryzae. Plant Cell 22:3177–3187 Marone D, Russo MA, Laidò G, De Leonardis AM, Mastrangelo AM (2013) Plant nucleotide binding site-leucine-rich repeat (NBS-LRR) genes: active guardians in host defense responses. Int J Mol Sci 14:7302–7326 McGee JD, Hamer JE, Hodges TK (2001) Characterization of a PR-10 pathogenesis-related gene family induced in rice during infection with Magnaporthe grisea. Mol Plant-Microbe Interact 14:877–886 Mehnaz S, Lazarovits G (2006) Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb Ecol 51:326–335 Mitsuhara I, Iwai T, Seo S, Yanagawa Y, Kawahigasi H, Hirose S, Ohkawa Y, Ohashi Y (2008) Characteristic expression of twelve rice PR1 family genes in response to pathogen infection, wounding, and defense-related signal compounds. Mol Genet Genom 279:415–427 Narsai R, Ivanova A, Ng S, Whelan J (2010) Defining reference genes in Oryza sativa using organ, development, biotic and abiotic transcriptome datasets. BMC Plant Biol 10:56 Nelson LM, Knowles R (1978) Effect of oxygen and nitrate on nitrogen fixation and denitrification by Azospirillum brasilensegrown in continuous culture. Can J Microbiol 24:1395–1403 Okada A, Shimizu T, Okada K, Kuzuyama T, Koga J, Shibuya N, Nojiri H, Yamane H (2007) Elicitor induced activation of the methylerythritol phosphate pathway toward phytoalexins biosynthesis in rice. Plant Mol Biol 65:177–187 Olivares FL, James EK, Baldani JI, Döbereiner J (1997) Infection of mottled stripe disease-susceptible and resistant sugar cane varieties by the endophytic diazotroph Herbaspirillum. New Phytol 135:723–727 Ona O, Van Impe J, Prinsen E, Vanderleyden J (2005) Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. FEMS Microbiol Lett 246:125–132 Pankievicz VCS, Camilios-Neto D, Bonato P, Balsanelli E, Tadra-Sfeir MZ, Faoro H, Chubatsu LS, Donatti L, Wajnberg G, Passetti F, Monteiro RA, Pedrosa FO, Souza EM (2016) RNA-seq transcriptional profiling of Herbaspirillum seropedicae colonizing wheat (Triticum aestivum) roots. Plant Mol Biol 90:589–603 Paxton JD (1981) Phytoalexins—a working redefinition. J Phytopathol 101:106–109 Pedrosa FO, Monteiro RA, Wassem R, Cruz LM, Ayub RA, Colauto NB, Fernandez MA et al (2011) Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet 7:e1002064 Peng Y, Bartley LE, Chen X, Dardick C, Chern M, Ruan R (2008) OSWRKY62 is a negative regulator of basal and XA21 -mediated defense against Xanthomonas oryzae pv. oryzae in rice. Mol Plant 1:446–458 Pereg L, de-Bashan LE, Bashan Y (2016) Assessment of affinity and specificity of Azospirillum for plants. Plant Soil 399:389–414 Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375 Rekha K, Kumar RM, Ilango K, Rex A, Usha B (2018) Transcriptome profiling of rice roots in early response to Bacillus subtilis (RR4) colonization. Botany 96:749–765 Rondeau M, Esmaeel Q, Crouzet J, Blin P, Gosselin I, Sarazin C, Pernes M, Beaugrand J, Wisniewski-Dyé F, Vial L, Faure D, Clément C, Ait Barka E, Jacquard C, Sanchez L (2019) Biofilm constructing variants of Paraburkholderia phytofirmans PsJN outcompete the wild-type form in free-living and static conditions but not in planta. Appl Environ Microbiol 85:e02670-18 Schloter M, Hartmann A (1998) Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studied with strain-specific monoclonal antibodies. Symbiosis 25:159–179 Sekido H, Akatsuka T (1987) Mode of action of oryzalexin D against Pyricularia oryzae. Agric Biol Chem 51:1967–1971 Sessitsch A, Coenye T, Sturz AV, Vandamme P, Barka EA, Salles JF, Van Elsas JD, Faure D, Reiter B, Glick BR, Wang-Pruski G, Nowak J (2005) Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol 55:1187–1192 Soto MJ, Domínguez-Ferreras A, Pérez-Mendoza D, Sanjuán J, Olivares J (2009) Mutualism versus pathogenesis: the give-and-take in plant-bacteria interactions. Cell Microbiol 11:381–388 Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448 Spaepen S, Vanderleyden J, Okon Y (2009) Plant growth-promoting actions of rhizobacteria. In: Van Loon LC (ed) Plant innate immunity, vol 51. Elsevier, Amsterdam, pp 283–320 Spaepen S, Bossuyt S, Engelen K, Marchal K, Vanderleyden J (2014) Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin-producing bacterium Azospirillum brasilense. New Phytol 201:850–861 Stringlis IA, Proietti S, Hickman R, Van Verk M, Zamioudis C, Pieterse CMJ (2018) Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. Plant J 93:166–180 Tarrand JJ, Krieg NR, Döbereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980 Thomas-Bauzon D, Weinhard P, Villecourt P, Balandreau J (1982) The spermosphere model. I. Its use in growing, counting, and isolating N 2 -fixing bacteria from the rhizosphere of rice. Can J Microbiol 28:922–928 Toyomasu T, Kagahara T, Okada K, Koga J, Hasegawa M, Mitsuhashi W, Sassa T, Yamane H (2008) Diterpene phytoalexins are biosynthesized in and exuded from the roots of rice seedlings. Biosci Biotechnol Biochem 72:562–567 Trân Vân V, Ngôkê S, Berge O, Hebbar P, Heulin T, Faure D, Bally R (1997) Isolation of Azospirillum lipoferum from the rhizosphere of rice by a new, simple method. Can J Microbiol 43:486–490 Vacheron J, Moënne-Loccoz Y, Dubost A, Gonçalves-Martins M, Muller D, Prigent-Combaret C (2016) Fluorescent Pseudomonas strains with only few plant-beneficial properties are favored in the maize rhizosphere. Front Plant Sci 7:1–13 Valette M, Rey M, Gerin F, Comte G, Wisniewski-Dyé F (2020) A common metabolomic signature is observed upon inoculation of rice roots with various rhizobacteria. J Integr Plant Biol 62:228–246 van de Mortel JE, de Vos RCH, Dekkers E, Pineda A, Guillod L, Bouwmeester K, van Loon JJA, Dicke M, Raaijmakers JM (2012) Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant Physiol 160:2173–2188 Verhagen BWM, Glazebrook J, Zhu T, Chang H-S, van Loon LC, Pieterse CMJ (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant-Microbe Interact 17:895–908 Vial L, Lavire C, Mavingui P, Blaha D, Haurat J, Moënne-Loccoz Y, Bally R, Wisniewski-Dyé F (2006) Phase variation and genomic architecture changes in Azospirillum. J Bacteriol 188:5364–5373 Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058 Wisniewski-Dyé F, Herrera AM, Drogue B, Acosta-Cruz E, Prigent-Combaret C, Lozano L, González V, Barbe V, Rouy Z, Mavingui P, Borland S (2012) Genome sequence of Azospirillum brasilense CBG497 and comparative analyses of Azospirillum core and accessory genomes provide insight into niche adaptation. Genes 3:576–602 Yamane H (2013) Biosynthesis of phytoalexins and regulatory mechanisms of it in rice. Biosci Biotechnol Biochem 77:1141–1148 Yang DL, Yang Y, He Z (2013) Roles of plant hormones and their interplay in rice immunity. Mol Plant 6:675–685 Yang J, Duan GH, Li CQ, Liu L, Han GY, Zhang YL, Wang CM (2020) The crosstalks between jasmonic acid and other plant hormone signaling highlight the Involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Front Plant Sci 10:1349 Yano K, Satoko Y, Muller J, Singh S, Banba M, Vickers K, Markmann K, White C, Schuller B, Sato S, Asamizu E, Tabata S, Murooka Y, Perry J, Wang TL, Kawaguchi M, Imaizumi-Anraku H, Hayashi M, Parniske M (2008) CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc Natl Acad Sci 105:20540–20545 Zaplin ES, Liu Q, Li Z, Butardo VM, Blanchard CL, Rahman S (2013) Production of high oleic rice grains by suppressing the expression of the OsFAD2-1 gene. Funct Plant Biol 40:996–1004 Zhang X, Bao Y, Shan D, Wang Z, Song X, Wang Z, Wang J, He L, Wu L, Zhang Z, Niu D, Jin H, Zhao H (2018) Magnaporthe oryzae induces the expression of a microRNA to suppress the immune response in rice. Plant Physiol 177:352–368