Spatial and biological oceanographic insights into the massive fish-killing bloom of the haptophyte Chrysochromulina leadbeateri in northern Norway
Tài liệu tham khảo
Albretsen, 2011
Andersen, 2015, Ichthyotoxicity of the microalga Pseudochattonella farcimen under laboratory and field conditions in Danish waters, Dis. Aquat. Org., 116, 165, 10.3354/dao02916
Apprill, 2015, Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton, Aquat. Microb. Ecol., 75, 129, 10.3354/ame01753
Avrahami, 2020, Detection of Phagotrophy in the marine phytoplankton group of the Coccolithophores (Calcihaptophycidae, Haptophyta) during nutrient-replete and phosphate-limited growth, J. Phycol., 56, 1103, 10.1111/jpy.12997
Bray, 1957, An ordination of the upland forest communities of southern Wisconsin, Ecol. Monogr., 27, 325, 10.2307/1942268
Bresnan, 2021, Diversity and regional distribution of harmful algal events along the Atlantic margin of Europe, Harmful Algae, 102, 10.1016/j.hal.2021.101976
Buchan, 2014, Master recyclers: features and functions of bacteria associated with phytoplankton blooms, Nat. Rev. Microbiol., 12, 686, 10.1038/nrmicro3326
Callahan, 2016, DADA2: high-resolution sample inference from Illumina amplicon data, Nat. Methods, 13, 581, 10.1038/nmeth.3869
Conway, 2017, UpSetR: an R package for the visualization of intersecting sets and their properties, Bioinformatics, 33, 2938, 10.1093/bioinformatics/btx364
Dahl, 2005, The dynamics of Chrysochromulina species in the Skagerrak in relation to environmental conditions, J. Sea Res., 54, 15, 10.1016/j.seares.2005.02.004
Dahl, 1989, The Chrysochromulina polylepis Bloom in Scandinavian Waters During Spring 1988, 383
Edvardsen, 2016
Edvardsen, 2011, Ribosomal DNA phylogenies and a morphological revision provide the basis for a revised taxonomy of the Prymnesiales (Haptophyta), Eur. J. Phycol., 46, 202, 10.1080/09670262.2011.594095
Edvardsen, 1998, Bloom dynamics and physiology of Prymnesium and Chrysochromulina, Physiological Ecology of Harmful Algal Blooms. NATO ASI SERIES G ECOLOGICAL SCIENCES., 193
Edvardsen, 1992, Two motile stages of Chrysochromulina polylepis (Prymnesiophyceae): morfology, growth and toxicity, J. Phycol., 28, 12, 10.1111/j.0022-3646.1992.00104.x
Egge, 2015, Deep-branching Novel Lineages and High Diversity of Haptophytes in the Skagerrak (Norway) Uncovered by 454 Pyrosequencing, J. Eukaryot. Microbiol., 62, 121, 10.1111/jeu.12157
Egge, 2015, Seasonal diversity and dynamics of haptophytes in the S kagerrak, N orway, explored by high-throughput sequencing, Mol. Ecol., 24, 3026, 10.1111/mec.13160
Eikrem, 1998, Morphology and some ultrastructural details of Chrysochromulina leadbeateri Estep et al. (Prymnesiophyceae, Haptophyta) from Northern Norway, Phycologia, 37, 292, 10.2216/i0031-8884-37-4-292.1
Eppley, 1967, Periodicity in cell division and physiological behavior of Ditylum brightwellii, a marine planktonic diatom, during growth in light-dark cycles, Archiv. Mikrobiol., 56, 305, 10.1007/BF00425206
Estep, 1984, Chloroplast containing microflagellates in natural populations of north Atlantic nanoplankton, their identification and distribution; including a description of five new species of Chrysochromulina (Prymnesiophyceae), Protistologica (Paris. 1965), 20, 613
Gasol, 2015, Flow cytometric determination of microbial abundances and its use to obtain indices of community structure and relative activity, 159
Gjøsæter, 2000, A long-term perspective on the Chrysochromulina bloom on the Norwegian Skagerrak coast 1988: a catastrophe or an innocent incident?, Mar. Ecol. Prog. Ser., 207, 201, 10.3354/meps207201
Godhe, 2016, Physical barriers and environmental gradients cause spatial and temporal genetic differentiation of an extensive algal bloom, J. Biogeogr., 43, 1130, 10.1111/jbi.12722
Gran-Stadniczeñko, 2017, Haptophyte diversity and vertical distribution explored by 18S and 28S Ribosomal RNA Gene Metabarcoding and scanning electron microscopy, J. Eukaryotic Microbiol., 64, 514, 10.1111/jeu.12388
Gran-Stadniczeñko, 2017, Haptophyte diversity and vertical distribution explored by 18S and 28S Ribosomal RNA gene metabarcoding and scanning electron microscopy, J. Eukaryot. Microbiol., 64, 514, 10.1111/jeu.12388
Guillou, 2013, The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy, Nucl. Acids Res, 41, D597, 10.1093/nar/gks1160
Guiry, 2021
Hallegraeff, 2021, Global harmful algal bloom status reporting, Harmful. Algae, 102, 10.1016/j.hal.2021.101992
Hegseth, 1991, 1991
Johannessen, 2017, Seasonal dynamics of haptophytes and dsDNA algal viruses suggest complex virus-host relationship, Viruses, 9, 84, 10.3390/v9040084
John, Uwe, Wisotzki, Andreas, 2019. Physical oceanography during HEINCKE cruise HE533. https://doi.org/10.1594/PANGAEA.903511.
Johnsen, 2010, Prymnesium parvum : the Norwegian Experience 1: p rymnesium parvum : t he Norwegian E xperience, JAWRA J. Am. Water Resour. Assoc., 46, 6, 10.1111/j.1752-1688.2009.00386.x
Jones, 1994, Mixotrophy in haptophytes, System. Assoc. Spec., 51, 247
Karlson, 2021, Harmful algal blooms and their effects in coastal seas of Northern Europe, Harmful. Algae, 102, 10.1016/j.hal.2021.101989
Kong, 2021, Illuminating key microbial players and metabolic processes involved in the remineralization of particulate organic carbon in the Ocean's twilight zone by metaproteomics, Appl. Environ. Microbiol., 87, 10.1128/AEM.00986-21
Lackey, 1939, Notes on plankton flagellates from the Scioto River, Lloydia, 2, 128
Legendre, 2001, Ecologically meaningful transformations for ordination of species data, Oecologia, 129, 271, 10.1007/s004420100716
Lekve, 2006, Environmental forcing as a main determinant of bloom dynamics of the Chrysochromulina algae, Proc. Biol. Sci., 273, 3047
Mardones, 2019, Salinity-Growth Response and Ichthyotoxic Potency of the Chilean Pseudochattonella verruculosa, Front. Mar. Sci., 6, 24, 10.3389/fmars.2019.00024
Marthinussen, 2020
Martin, 2011, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet J, 17, 10, 10.14806/ej.17.1.200
Nielsen, 1990, Effects of a Chrysochromulina polylepis subsurface bloom on the planktonic community, Mar. Ecol. Prog. Ser., 21, 10.3354/meps062021
Oksanen, 2020
Parada, 2016, Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples: primers for marine microbiome studies, Environ. Microbiol., 18, 1403, 10.1111/1462-2920.13023
Piredda, 2017, Diversity and temporal patterns of planktonic protist assemblages at a mediterranean long term ecological research site, FEMS Microbiol. Ecol., 93, 1, 10.1093/femsec/fiw200
2020
Rey, F., 1991. Oppblomstringen av Chrysochromulina leadbeateri i Vestfjorden, mai-juni 1991: rapport fra et faglig arbeidsseminar.
Rohardt, G., 2019. CTD Processing Report of RV Heincke HE533.
Ruggiero, 2017, Clonal expansion behind a marine diatom bloom, ISME J, 12, 463, 10.1038/ismej.2017.181
Samdal, 2020, Massive salmon mortalities during a Chrysochromulina leadbeateri bloom in Northern Norway, Harmful Algal News, 64, 4
Skjoldal, 1991
Stamatakis, 2014, RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, 30, 1312, 10.1093/bioinformatics/btu033
Teeling, 2012, Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom, Science, 336, 608, 10.1126/science.1218344
Teeling, 2016, Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms, Elife, 5, e11888, 10.7554/eLife.11888
Thomsen, 1994, Haptophytes as components of marine phytoplankton, 187
Throndsen, 2007
Wells, 2015, Harmful algal blooms and climate change: learning from the past and present to forecast the future, Harmful Algae, 49, 68, 10.1016/j.hal.2015.07.009
Wolf, 2021, Revealing environmentally driven population dynamics of an Arctic diatom using a novel microsatellite PoolSeq barcoding approach, Environ Microbiol, 23, 3809, 10.1111/1462-2920.15424
Zhongming, Z., Linong, L., Wangqiang, Z., Wei, L., others, 2021. AR6 climate change 2021: the physical science basis.