Tensile, fracture toughness, and fatigue crack growth rate properties of zirconium copper

Springer Science and Business Media LLC - Tập 9 - Trang 63-69 - 1987
W. A. Logsdon1, P. K. Liaw1
1Materials Analyses Department, Westinghouse R&D Center, Pittsburgh

Tóm tắt

Room-temperature tensile, fracture toughness, and fatigue crack growth rate (FCGR) properties were developed on high-conductivity (94% IACS), 0.17 wt% zirconium copper (solution annealed, quenched, warm-worked, and aged). Longitudinal and transverse 0.2 pet offset yield strengths of this zirconium copper equaled 36.2 and 38.6 ksi (250 and 266 MPa), respectively. The average room temperature fracture toughness was superb at 382 ksi √in (423 MPa √m); the tearing modulus averaged 438 (nondimensional), and, as such, zirconium copper should be stable against tearing mechanisms for all crack configurations. The growth rate of fatigue cracks in zirconium copper was approximately 1 order of magnitude slower than in annealed pure copper. Consequently, zirconium copper proved to be an attractive material from both electrical conductivity and structural material properties standpoints.

Tài liệu tham khảo

W.A. Logsdon, J.M. Wells, and R. Kossowsky: InAdvances in Cryogenic Engineering Materials, vol. 26, p. 137. Plenum, New York, 1980. 300 MVA Superconducting Generator Development Technical Report 12, EPRI contract RP1473-1, September 1982. G.A. Clarke, W.R. Andrews, P.C. Paris, and D.W. Schmidt: InMechanics of Crack Growth, ASTM STP 590, p. 27. American Society for Testing and Materials, Philadelphia, 1976. G.A. Clarke: InFracture Mechanics: Thirteenth Conference, ASTM STP 743, p. 553 American Society for Testing and Materials, Philadelphia, 1981. K. Donald and D. Schmidt: Rotational effects on compact specimens, presented at the ASTM E-24 meetings, ASTM Committee Week, Norfolk, VA, 1977. G.A. Clarke and J.D. Landes: InToughness Characterization and Specifications for HSLA and Structural Steels, p. 79. Metallurgical Society of AIME, 1977. A. Saxena, S.J. Hudak, J.K. Donald, and D.W. Schmidt:J. Testing Evaluation, 1978, vol. 6, p. 167. R.S. Williams, P.K. Liaw, M.G. Peck, and T.R. Leax:Engineering Fracture Mechanics 1983, vol. 18, p. 953. W.G. Clark, Jr. and S.J. Hudak, Jr.:J. Testing Evaluation, 1975, vol. 3, p. 454. M.J. Saarivirta:Trans. Metall. Soc. AIME, 1960, vol. 218, p. 431. AMZIRC,Alloy Digest, Engineering Alloys Digest, Inc., Upper Montelair, NJ, 1961. J.L. Dion and R. Thomson:Copper-Zirconium Alloys (A Literature Survey), Department of Energy, Mines and Resources, Mines Branch, Physical Metallurgy Division, Ottawa, Canada, Information Circular IC 186, 1966. P.C. Paris, H. Tada, A. Zahoor, and H. Ernst: InElastic-Plastic Fracture, ASTM STP 668, p. 5. American Society for Testing and Materials, Philadelphia, 1979. A. Saxena and S.D. Antolovich:Met. Trans., 1975, vol. 6A, p. 1809. H. Ishii and K. Yukawa:Met. Trans., 1979, vol. 10A, p. 1881. P.C. Paris: In Proceedings Tenth Sagamore Army Materials Research Conference, Syracuse University Press, Syracuse, NY, 1964, p. 107. P.K. Liaw, T.R. Leax, R.S. Williams, and M.G. Peck:Met. Trans., 1982, vol. 13A, p. 1607. D. Benoit, R.N. Tixier, and R. Tixier:Mater. Sci. Eng., 1980, vol. 45, p. 1. W. Elber: InDamage Tolerance in Aircraft Structures, ASTM STP 486, p. 230. American Society for Testing and Materials, 1971. D.L. Davidson:Fatigue Eng. Mater. Struct., 1980, vol. 3, p. 229. S. Suresh, G.F. Zamiski, and R.O. Ritchie:Met. Trans., 1981, vol. 12A, p. 1435. P.K. Liaw, T.R. Leax, R.S. Williams, and M.G. Peck:Acta Met., 1982, vol. 30, p. 2071. J.E. Allison: Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh, PA, 1982. J.L. Yuen: Ph.D. Thesis, Stanford University, Palo Alto, CA, 1982. A.K. Vasudevan and S. Suresh:Met. Trans., 1982, vol. 13A, p. 2271.