An overview of microRNAs
Tài liệu tham khảo
Horvitz, 1980, Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans, Genetics, 96, 435, 10.1093/genetics/96.2.435
Lee, 1993, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, 75, 843, 10.1016/0092-8674(93)90529-Y
Wightman, 1993, Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans, Cell, 75, 855, 10.1016/0092-8674(93)90530-4
Reinhart, 2000, The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans, Nature, 403, 901, 10.1038/35002607
Pasquinelli, 2000, Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA, Nature, 408, 86, 10.1038/35040556
Fire, 1998, Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature, 391, 806, 10.1038/35888
Hamilton, 1999, A species of small antisense RNA in posttranscriptional gene silencing in plants, Science, 286, 950, 10.1126/science.286.5441.950
Zamore, 2000, RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals, Cell, 101, 25, 10.1016/S0092-8674(00)80620-0
Hammond, 2000, An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells, Nature, 404, 293, 10.1038/35005107
Hutvagner, 2001, A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA, Science, 293, 834, 10.1126/science.1062961
Grishok, 2001, Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing, Cell, 106, 23, 10.1016/S0092-8674(01)00431-7
Ketting, 2001, Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans, Genes Dev., 15, 2654, 10.1101/gad.927801
Griffiths-Jones, 2006, miRBase: microRNA sequences, targets and gene nomenclature, Nucleic Acids Res., 34, D140, 10.1093/nar/gkj112
Bartel, 2004, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, 116, 281, 10.1016/S0092-8674(04)00045-5
Rodriguez, 2004, Identification of mammalian microRNA host genes and transcription units, Genome Res., 14, 1902, 10.1101/gr.2722704
Poliseno, 2010, Identification of the miR-106b~25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation, Sci. Signal., 3, ra29, 10.1126/scisignal.2000594
Ventura, 2008, Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters, Cell, 132, 875, 10.1016/j.cell.2008.02.019
Lagos-Quintana, 2001, Identification of novel genes coding for small expressed RNAs, Science, 294, 853, 10.1126/science.1064921
Lau, 2001, An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans, Science, 294, 858, 10.1126/science.1065062
Lee, 2001, An extensive class of small RNAs in Caenorhabditis elegans, Science, 294, 862, 10.1126/science.1065329
Papadopoulos, 2009, The database of experimentally supported targets: a functional update of TarBase, Nucleic Acids Res., 37, D155, 10.1093/nar/gkn809
Lee, 2004, MicroRNA genes are transcribed by RNA polymerase II, EMBO J., 23, 4051, 10.1038/sj.emboj.7600385
Bortolin-Cavaille, 2009, C19MC microRNAs are processed from introns of large Pol-II, non-protein-coding transcripts, Nucleic Acids Res., 37, 3464, 10.1093/nar/gkp205
Cai, 2004, Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs, RNA, 10, 1957, 10.1261/rna.7135204
O'Donnell, 2005, c-Myc-regulated microRNAs modulate E2F1 expression, Nature, 435, 839, 10.1038/nature03677
Woods, 2007, Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors, J. Biol. Chem., 282, 2130, 10.1074/jbc.C600252200
Marson, 2008, Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells, Cell, 134, 521, 10.1016/j.cell.2008.07.020
Chang, 2007, Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis, Mol. Cell, 26, 745, 10.1016/j.molcel.2007.05.010
Raver-Shapira, 2007, Transcriptional activation of miR-34a contributes to p53-mediated apoptosis, Mol. Cell, 26, 731, 10.1016/j.molcel.2007.05.017
He, 2007, A microRNA component of the p53 tumour suppressor network, Nature, 447, 1130, 10.1038/nature05939
Georgakilas, 2014, MicroTSS: accurate microRNA transcription start site identification reveals a significant number of divergent pri-miRNAs, Nat. Commun., 5, 5700, 10.1038/ncomms6700
Bhattacharyya, 2012, MicroRNA transcription start site prediction with multi-objective feature selection, Stat. Appl. Genet. Mol. Biol., 11, 10.2202/1544-6115.1743
Ozsolak, 2008, Chromatin structure analyses identify miRNA promoters, Genes Dev., 22, 3172, 10.1101/gad.1706508
Kim, 2009, Biogenesis of small RNAs in animals, Nat. Rev. Mol. Cell Biol., 10, 126, 10.1038/nrm2632
Lee, 2003, The nuclear RNase III Drosha initiates microRNA processing, Nature, 425, 415, 10.1038/nature01957
Lee, 2002, MicroRNA maturation: stepwise processing and subcellular localization, EMBO J., 21, 4663, 10.1093/emboj/cdf476
Ballarino, 2009, Coupled RNA processing and transcription of intergenic primary microRNAs, Mol. Cell. Biol., 29, 5632, 10.1128/MCB.00664-09
Morlando, 2008, Primary microRNA transcripts are processed co-transcriptionally, Nat. Struct. Mol. Biol., 15, 902, 10.1038/nsmb.1475
Han, 2004, The Drosha–DGCR8 complex in primary microRNA processing, Genes Dev., 18, 3016, 10.1101/gad.1262504
Gregory, 2004, The microprocessor complex mediates the genesis of microRNAs, Nature, 432, 235, 10.1038/nature03120
Denli, 2004, Processing of primary microRNAs by the microprocessor complex, Nature, 432, 231, 10.1038/nature03049
Yi, 2003, Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs, Genes Dev., 17, 3011, 10.1101/gad.1158803
Lund, 2004, Nuclear export of microRNA precursors, Science, 303, 95, 10.1126/science.1090599
Bohnsack, 2004, Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs, RNA, 10, 185, 10.1261/rna.5167604
Bernstein, 2001, Role for a bidentate ribonuclease in the initiation step of RNA interference, Nature, 409, 363, 10.1038/35053110
Maniataki, 2005, A human ATP-independent, RISC assembly machine fueled by pre-miRNA, Genes Dev., 19, 2979, 10.1101/gad.1384005
Gregory, 2005, Human RISC couples microRNA biogenesis and posttranscriptional gene silencing, Cell, 123, 631, 10.1016/j.cell.2005.10.022
Gatignol, 2005, Dual role of TRBP in HIV replication and RNA interference: viral diversion of a cellular pathway or evasion from antiviral immunity?, Retrovirology, 2, 65, 10.1186/1742-4690-2-65
Haase, 2005, TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing, EMBO Rep., 6, 961, 10.1038/sj.embor.7400509
Chendrimada, 2005, TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing, Nature, 436, 740, 10.1038/nature03868
Yang, 2011, Widespread regulatory activity of vertebrate microRNA* species, RNA, 17, 312, 10.1261/rna.2537911
Ohanian, 2013, A heterozygous variant in the human cardiac miR-133 gene, MIR133A2, alters miRNA duplex processing and strand abundance, BMC Genet., 14, 18, 10.1186/1471-2156-14-18
Lee, 2010, Complexity of the microRNA repertoire revealed by next-generation sequencing, RNA, 16, 2170, 10.1261/rna.2225110
Marti, 2010, A myriad of miRNA variants in control and Huntington's disease brain regions detected by massively parallel sequencing, Nucleic Acids Res., 38, 7219, 10.1093/nar/gkq575
Baran-Gale, 2013, Beta cell 5′-shifted isomiRs are candidate regulatory hubs in type 2 diabetes, PLoS ONE, 8, e73240, 10.1371/journal.pone.0073240
Vickers, 2013, Complexity of microRNA function and the role of isomiRs in lipid homeostasis, J. Lipid Res., 54, 1182, 10.1194/jlr.R034801
Hammond, 2001, Argonaute2, a link between genetic and biochemical analyses of RNAi, Science, 293, 1146, 10.1126/science.1064023
Tabara, 1999, The rde-1 gene, RNA interference, and transposon silencing in C. elegans, Cell, 99, 123, 10.1016/S0092-8674(00)81644-X
Matranga, 2005, Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes, Cell, 123, 607, 10.1016/j.cell.2005.08.044
Shin, 2008, Cleavage of the star strand facilitates assembly of some microRNAs into Ago2-containing silencing complexes in mammals, Mol. Cell, 26, 308
Liu, 2009, C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation, Science, 325, 750, 10.1126/science.1176325
Ye, 2011, Structure of C3PO and mechanism of human RISC activation, Nat. Struct. Mol. Biol., 18, 650, 10.1038/nsmb.2032
Tomari, 2004, RISC assembly defects in the Drosophila RNAi mutant armitage, Cell, 116, 831, 10.1016/S0092-8674(04)00218-1
Meister, 2005, Identification of novel argonaute-associated proteins, Curr. Biol., 15, 2149, 10.1016/j.cub.2005.10.048
Nykanen, 2001, ATP requirements and small interfering RNA structure in the RNA interference pathway, Cell, 107, 309, 10.1016/S0092-8674(01)00547-5
Robb, 2007, RNA helicase A interacts with RISC in human cells and functions in RISC loading, Mol. Cell, 26, 523, 10.1016/j.molcel.2007.04.016
Liu, 2012, Precursor microRNA-programmed silencing complex assembly pathways in mammals, Mol. Cell, 46, 507, 10.1016/j.molcel.2012.03.010
Lai, 2005, Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs, Genes Dev., 19, 1067, 10.1101/gad.1291905
Lewis, 2003, Prediction of mammalian microRNA targets, Cell, 115, 787, 10.1016/S0092-8674(03)01018-3
Jackson, 2003, Expression profiling reveals off-target gene regulation by RNAi, Nat. Biotechnol., 21, 635, 10.1038/nbt831
Grimson, 2007, MicroRNA targeting specificity in mammals: determinants beyond seed pairing, Mol. Cell, 27, 91, 10.1016/j.molcel.2007.06.017
Shin, 2010, Expanding the microRNA targeting code: functional sites with centered pairing, Mol. Cell, 38, 789, 10.1016/j.molcel.2010.06.005
Helwak, 2013, Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding, Cell, 153, 654, 10.1016/j.cell.2013.03.043
Miranda, 2006, A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes, Cell, 126, 1203, 10.1016/j.cell.2006.07.031
Liu, 2004, Argonaute2 is the catalytic engine of mammalian RNAi, Science, 305, 1437, 10.1126/science.1102513
Doench, 2003, siRNAs can function as miRNAs, Genes Dev., 17, 438, 10.1101/gad.1064703
Pfaff, 2013, Argonaute and GW182 proteins: an effective alliance in gene silencing, Biochem. Soc. Trans., 41, 855, 10.1042/BST20130047
Braun, 2013, The role of GW182 proteins in miRNA-mediated gene silencing, Adv. Exp. Med. Biol., 768, 147, 10.1007/978-1-4614-5107-5_9
Fabian, 2012, The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC, Nat. Struct. Mol. Biol., 19, 586, 10.1038/nsmb.2296
Ruby, 2007, Intronic microRNA precursors that bypass Drosha processing, Nature, 448, 83, 10.1038/nature05983
Berezikov, 2007, Mammalian mirtron genes, Mol. Cell, 28, 328, 10.1016/j.molcel.2007.09.028
Okamura, 2007, The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila, Cell, 130, 89, 10.1016/j.cell.2007.06.028
Babiarz, 2008, Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, Dicer-dependent small RNAs, Genes Dev., 22, 2773, 10.1101/gad.1705308
Cheloufi, 2010, A dicer-independent miRNA biogenesis pathway that requires Ago catalysis, Nature, 465, 584, 10.1038/nature09092
Cifuentes, 2010, A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity, Science, 328, 1694, 10.1126/science.1190809
Yang, 2010, Dicer-independent, Ago2-mediated microRNA biogenesis in vertebrates, Cell Cycle, 9, 4455, 10.4161/cc.9.22.13958
Diederichs, 2007, Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression, Cell, 131, 1097, 10.1016/j.cell.2007.10.032
Garcia-Silva, 2012, Hints of tRNA-derived small RNAs role in RNA silencing mechanisms, Genes (Basel), 3, 603, 10.3390/genes3040603
Haussecker, 2010, Human tRNA-derived small RNAs in the global regulation of RNA silencing, RNA, 16, 673, 10.1261/rna.2000810
Lee, 2009, A novel class of small RNAs: tRNA-derived RNA fragments (tRFs), Genes Dev., 23, 2639, 10.1101/gad.1837609
Janas, 2012, Alternative RISC assembly: binding and repression of microRNA–mRNA duplexes by human Ago proteins, RNA, 18, 2041, 10.1261/rna.035675.112
Eiring, 2010, miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts, Cell, 140, 652, 10.1016/j.cell.2010.01.007
Paduano, 2013, Protein tyrosine phosphatase PTPRJ is negatively regulated by microRNA-328, FEBS J., 280, 401, 10.1111/j.1742-4658.2012.08624.x
Turrini, 2012, MicroRNA profiling in K-562 cells under imatinib treatment: influence of miR-212 and miR-328 on ABCG2 expression, Pharmacogenet. Genomics, 22, 198, 10.1097/FPC.0b013e328350012b
Boissonneault, 2009, MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1, J. Biol. Chem., 284, 1971, 10.1074/jbc.M807530200
Wang, 2008, MicroRNA miR-328 regulates zonation morphogenesis by targeting CD44 expression, PLoS ONE, 3, e2420, 10.1371/journal.pone.0002420
Chen, 2012, MicroRNA-328 may influence myopia development by mediating the PAX6 gene, Invest. Ophthalmol. Vis. Sci., 53, 2732, 10.1167/iovs.11-9272
Ekimler, 2014, Computational methods for microRNA target prediction, Genes (Basel), 5, 671, 10.3390/genes5030671
Friedman, 2009, Most mammalian mRNAs are conserved targets of microRNAs, Genome Res., 19, 92, 10.1101/gr.082701.108
John, 2004, Human microRNA targets, PLoS Biol., 2, e363, 10.1371/journal.pbio.0020363
Grun, 2005, MicroRNA target predictions across seven Drosophila species and comparison to mammalian targets, PLoS Comput. Biol., 1, e13, 10.1371/journal.pcbi.0010013
Thomas, 2010, Desperately seeking microRNA targets, Nat. Struct. Mol. Biol., 17, 1169, 10.1038/nsmb.1921
Huang, 2010, A study of miRNAs targets prediction and experimental validation, Protein Cell, 1, 979, 10.1007/s13238-010-0129-4
Hafner, 2010, Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP, Cell, 141, 129, 10.1016/j.cell.2010.03.009
Chi, 2009, Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps, Nature, 460, 479, 10.1038/nature08170
Karginov, 2007, A biochemical approach to identifying microRNA targets, Proc. Natl. Acad. Sci. U. S. A., 104, 19291, 10.1073/pnas.0709971104
Leung, 2011, Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs, Nat. Struct. Mol. Biol., 18, 237, 10.1038/nsmb.1991
Riley, 2012, Association of Argonaute proteins and microRNAs can occur after cell lysis, RNA, 18, 1581, 10.1261/rna.034934.112
Orom, 2008, MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation, Mol. Cell, 30, 460, 10.1016/j.molcel.2008.05.001
Lal, 2011, Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling, PLoS Genet., 7, e1002363, 10.1371/journal.pgen.1002363
Eichhorn, 2014, mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues, Mol. Cell, 56, 104, 10.1016/j.molcel.2014.08.028
van Dongen, 2008, Detecting microRNA binding and siRNA off-target effects from expression data, Nat. Methods, 5, 1023, 10.1038/nmeth.1267
Rasmussen, 2013, cWords — systematic microRNA regulatory motif discovery from mRNA expression data, Silence, 4, 2, 10.1186/1758-907X-4-2
Diao, 2014, MixMir: microRNA motif discovery from gene expression data using mixed linear models, Nucleic Acids Res., 42, e135, 10.1093/nar/gku672
Sood, 2006, Cell-type-specific signatures of microRNAs on target mRNA expression, Proc. Natl. Acad. Sci. U. S. A., 103, 2746, 10.1073/pnas.0511045103
Baek, 2008, The impact of microRNAs on protein output, Nature, 455, 64, 10.1038/nature07242
Baskerville, 2005, Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes, RNA, 11, 241, 10.1261/rna.7240905
Sylvestre, 2007, An E2F/miR-20a autoregulatory feedback loop, J. Biol. Chem., 282, 2135, 10.1074/jbc.M608939200
Chen, 2006, The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation, Nat. Genet., 38, 228, 10.1038/ng1725
Niu, 2008, Serum response factor orchestrates nascent sarcomerogenesis and silences the biomineralization gene program in the heart, Proc. Natl. Acad. Sci. U. S. A., 105, 17824, 10.1073/pnas.0805491105
Zhao, 2005, Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis, Nature, 436, 214, 10.1038/nature03817
Liu, 2007, An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133, Proc. Natl. Acad. Sci. U. S. A., 104, 20844, 10.1073/pnas.0710558105
Sweetman, 2008, Specific requirements of MRFs for the expression of muscle specific microRNAs, miR-1, miR-206 and miR-133, Dev. Biol., 321, 491, 10.1016/j.ydbio.2008.06.019
Thomson, 2006, Extensive post-transcriptional regulation of microRNAs and its implications for cancer, Genes Dev., 20, 2202, 10.1101/gad.1444406
Newman, 2008, Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing, RNA, 14, 1539, 10.1261/rna.1155108
Viswanathan, 2008, Selective blockade of microRNA processing by Lin28, Science, 320, 97, 10.1126/science.1154040
Rybak, 2008, A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment, Nat. Cell Biol., 10, 987, 10.1038/ncb1759
Nam, 2011, Molecular basis for interaction of let-7 microRNAs with Lin28, Cell, 147, 1080, 10.1016/j.cell.2011.10.020
Ali, 2012, Recognition of the let-7g miRNA precursor by human Lin28B, FEBS Lett., 586, 3986, 10.1016/j.febslet.2012.09.034
Lightfoot, 2011, A LIN28-dependent structural change in pre-let-7g directly inhibits dicer processing, Biochemistry, 50, 7514, 10.1021/bi200851d
Heo, 2009, TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation, Cell, 138, 696, 10.1016/j.cell.2009.08.002
Hagan, 2009, Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells, Nat. Struct. Mol. Biol., 16, 1021, 10.1038/nsmb.1676
Heo, 2008, Lin28 mediates the terminal uridylation of let-7 precursor microRNA, Mol. Cell, 32, 276, 10.1016/j.molcel.2008.09.014
Lehrbach, 2009, LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans, Nat. Struct. Mol. Biol., 16, 1016, 10.1038/nsmb.1675
Towbin, 2013, Systematic screens of proteins binding to synthetic microRNA precursors, Nucleic Acids Res., 41, e47, 10.1093/nar/gks1197
Trabucchi, 2009, The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs, Nature, 459, 1010, 10.1038/nature08025
Guil, 2007, The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a, Nat. Struct. Mol. Biol., 14, 591, 10.1038/nsmb1250
Newman, 2010, Emerging paradigms of regulated microRNA processing, Genes Dev., 24, 1086, 10.1101/gad.1919710
Krol, 2010, The widespread regulation of microRNA biogenesis, function and decay, Nat. Rev. Genet., 11, 597, 10.1038/nrg2843
Bernstein, 2003, Dicer is essential for mouse development, Nat. Genet., 35, 215, 10.1038/ng1253
Wang, 2007, DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal, Nat. Genet., 39, 380, 10.1038/ng1969
Park, 2010, Analysis of microRNA knockouts in mice, Hum. Mol. Genet., 19, R169, 10.1093/hmg/ddq367
Vidigal, 2014, The biological functions of miRNAs: lessons from in vivo studies, Trends Cell Biol., 25, 137, 10.1016/j.tcb.2014.11.004
van Rooij, 2007, Control of stress-dependent cardiac growth and gene expression by a microRNA, Science, 316, 575, 10.1126/science.1139089
van Rooij, 2009, A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance, Dev. Cell, 17, 662, 10.1016/j.devcel.2009.10.013
Kole, 2011, miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis, Genes Dev., 25, 125, 10.1101/gad.1975411
Somel, 2011, MicroRNA-driven developmental remodeling in the brain distinguishes humans from other primates, PLoS Biol., 9, e1001214, 10.1371/journal.pbio.1001214
Schratt, 2006, A brain-specific microRNA regulates dendritic spine development, Nature, 439, 283, 10.1038/nature04367
Griggs, 2013, MicroRNA-182 regulates amygdala-dependent memory formation, J. Neurosci., 33, 1734, 10.1523/JNEUROSCI.2873-12.2013
Fazi, 2005, A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis, Cell, 123, 819, 10.1016/j.cell.2005.09.023
Zhou, 2007, miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely, Proc. Natl. Acad. Sci. U. S. A., 104, 7080, 10.1073/pnas.0702409104
Vigorito, 2007, MicroRNA-155 regulates the generation of immunoglobulin class-switched plasma cells, Immunity, 27, 847, 10.1016/j.immuni.2007.10.009
Thai, 2007, Regulation of the germinal center response by microRNA-155, Science, 316, 604, 10.1126/science.1141229
Xiao, 2007, MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb, Cell, 131, 146, 10.1016/j.cell.2007.07.021
Lu, 2008, MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors, Dev. Cell, 14, 843, 10.1016/j.devcel.2008.03.012
Ben-Ami, 2009, A regulatory interplay between miR-27a and Runx1 during megakaryopoiesis, Proc. Natl. Acad. Sci. U. S. A., 106, 238, 10.1073/pnas.0811466106
Dore, 2008, A GATA-1-regulated microRNA locus essential for erythropoiesis, Proc. Natl. Acad. Sci. U. S. A., 105, 3333, 10.1073/pnas.0712312105
Felli, 2005, MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation, Proc. Natl. Acad. Sci. U. S. A., 102, 18081, 10.1073/pnas.0506216102
Johnnidis, 2008, Regulation of progenitor cell proliferation and granulocyte function by microRNA-223, Nature, 451, 1125, 10.1038/nature06607
Taganov, 2006, NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses, Proc. Natl. Acad. Sci. U. S. A., 103, 12481, 10.1073/pnas.0605298103
Garzon, 2006, MicroRNA fingerprints during human megakaryocytopoiesis, Proc. Natl. Acad. Sci. U. S. A., 103, 5078, 10.1073/pnas.0600587103
Thomson, 2004, A custom microarray platform for analysis of microRNA gene expression, Nat. Methods, 1, 47, 10.1038/nmeth704
Liu, 2004, An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues, Proc. Natl. Acad. Sci. U. S. A., 101, 9740, 10.1073/pnas.0403293101
Lu, 2005, MicroRNA expression profiles classify human cancers, Nature, 435, 834, 10.1038/nature03702
Chen, 2005, Real-time quantification of microRNAs by stem–loop RT-PCR, Nucleic Acids Res., 33, e179, 10.1093/nar/gni178
Calin, 2002, Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia, Proc. Natl. Acad. Sci. U. S. A., 99, 15524, 10.1073/pnas.242606799
Esquela-Kerscher, 2006, Oncomirs — microRNAs with a role in cancer, Nat. Rev. Cancer, 6, 259, 10.1038/nrc1840
Kutay, 2006, Downregulation of miR-122 in the rodent and human hepatocellular carcinomas, J. Cell. Biochem., 99, 671, 10.1002/jcb.20982
Girard, 2008, miR-122, a paradigm for the role of microRNAs in the liver, J. Hepatol., 48, 648, 10.1016/j.jhep.2008.01.019
Ota, 2004, Identification and characterization of a novel gene, C13orf25, as a target for 13q31–q32 amplification in malignant lymphoma, Cancer Res., 64, 3087, 10.1158/0008-5472.CAN-03-3773
He, 2005, A microRNA polycistron as a potential human oncogene, Nature, 435, 828, 10.1038/nature03552
Dews, 2006, Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster, Nat. Genet., 38, 1060, 10.1038/ng1855
Lu, 2007, Transgenic over-expression of the microRNA miR-17–92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells, Dev. Biol., 310, 442, 10.1016/j.ydbio.2007.08.007
Bonauer, 2009, The microRNA-17–92 cluster: still a miRacle?, Cell Cycle, 8, 3866, 10.4161/cc.8.23.9994
He, 2007, MicroRNAs join the p53 network—another piece in the tumour-suppression puzzle, Nat. Rev. Cancer, 7, 819, 10.1038/nrc2232
Berindan-Neagoe, 2014, MicroRNAome genome: a treasure for cancer diagnosis and therapy, CA Cancer J. Clin., 64, 311, 10.3322/caac.21244
Barbarotto, 2008, MicroRNAs and cancer: profile, profile, profile, Int. J. Cancer, 122, 969, 10.1002/ijc.23343
Fernandez-Hernando, 2013, MicroRNAs in metabolic disease, Arterioscler. Thromb. Vasc. Biol., 33, 178, 10.1161/ATVBAHA.112.300144
Hsu, 2012, Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver, J. Clin. Invest., 122, 2871, 10.1172/JCI63539
Tsai, 2012, MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis, J. Clin. Invest., 122, 2884, 10.1172/JCI63455
Esau, 2006, miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting, Cell Metab., 3, 87, 10.1016/j.cmet.2006.01.005
Krutzfeldt, 2005, Silencing of microRNAs in vivo with ‘antagomirs’, Nature, 438, 685, 10.1038/nature04303
Marquart, 2010, miR-33 links SREBP-2 induction to repression of sterol transporters, Proc. Natl. Acad. Sci. U. S. A., 107, 12228, 10.1073/pnas.1005191107
Najafi-Shoushtari, 2010, MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis, Science, 328, 1566, 10.1126/science.1189123
Rayner, 2010, MiR-33 contributes to the regulation of cholesterol homeostasis, Science, 328, 1570, 10.1126/science.1189862
Horie, 2010, MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo, Proc. Natl. Acad. Sci. U. S. A., 107, 17321, 10.1073/pnas.1008499107
Poy, 2004, A pancreatic islet-specific microRNA regulates insulin secretion, Nature, 432, 226, 10.1038/nature03076
Poy, 2009, miR-375 maintains normal pancreatic alpha- and beta-cell mass, Proc. Natl. Acad. Sci. U. S. A., 106, 5813, 10.1073/pnas.0810550106
Frost, 2011, Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs, Proc. Natl. Acad. Sci. U. S. A., 108, 21075, 10.1073/pnas.1118922109
Zhu, 2011, The Lin28/let-7 axis regulates glucose metabolism, Cell, 147, 81, 10.1016/j.cell.2011.08.033
Trajkovski, 2011, MicroRNAs 103 and 107 regulate insulin sensitivity, Nature, 474, 649, 10.1038/nature10112
Cullen, 2011, Herpesvirus microRNAs: phenotypes and functions, Curr Opin Virol, 1, 211, 10.1016/j.coviro.2011.04.003
Jopling, 2005, Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA, Science, 309, 1577, 10.1126/science.1113329
Jopling, 2008, Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome, Cell Host Microbe, 4, 77, 10.1016/j.chom.2008.05.013
Shimakami, 2012, Base pairing between hepatitis C virus RNA and microRNA 122 3′ of its seed sequence is essential for genome stabilization and production of infectious virus, J. Virol., 86, 7372, 10.1128/JVI.00513-12
Nelson, 2006, RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain, RNA, 12, 187, 10.1261/rna.2258506
Xi, 2007, Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples, RNA, 13, 1668, 10.1261/rna.642907
Lehmann, 2010, MicroRNA-profiling in formalin-fixed paraffin-embedded specimens, Methods Mol. Biol., 667, 113, 10.1007/978-1-60761-811-9_8
Hayes, 2014, MicroRNAs in cancer: biomarkers, functions and therapy, Trends Mol. Med., 20, 460, 10.1016/j.molmed.2014.06.005
Li, 2013, MicroRNA profile of paclitaxel-resistant serous ovarian carcinoma based on formalin-fixed paraffin-embedded samples, BMC Cancer, 13, 216, 10.1186/1471-2407-13-216
Vecchione, 2013, A microRNA signature defines chemoresistance in ovarian cancer through modulation of angiogenesis, Proc. Natl. Acad. Sci. U. S. A., 110, 9845, 10.1073/pnas.1305472110
Dai, 2011, MicroRNA expression profiles of head and neck squamous cell carcinoma with docetaxel-induced multidrug resistance, Head Neck, 33, 786, 10.1002/hed.21540
Salter, 2008, An integrated approach to the prediction of chemotherapeutic response in patients with breast cancer, PLoS ONE, 3, e1908, 10.1371/journal.pone.0001908
Du, 2013, A high-throughput screen identifies miRNA inhibitors regulating lung cancer cell survival and response to paclitaxel, RNA Biol., 10, 10.4161/rna.26541
Du, 2012, miR-337-3p and its targets STAT3 and RAP1A modulate taxane sensitivity in non-small cell lung cancers, PLoS ONE, 7, e39167, 10.1371/journal.pone.0039167
Asuragen.
RosettaGenomics.
Pritchard, 2012, MicroRNA profiling: approaches and considerations, Nat. Rev. Genet., 13, 358, 10.1038/nrg3198
Kapranov, 2012, Profiling of short RNAs using Helicos single-molecule sequencing, Methods Mol. Biol., 822, 219, 10.1007/978-1-61779-427-8_15
Gu, 2012, Detection of miRNAs with a nanopore single-molecule counter, Expert. Rev. Mol. Diagn., 12, 573, 10.1586/erm.12.58
Hafner, 2011, RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries, RNA, 17, 1697, 10.1261/rna.2799511
Leshkowitz, 2013, Differences in microRNA detection levels are technology and sequence dependent, RNA, 19, 527, 10.1261/rna.036475.112
Knutsen, 2013, Performance comparison of digital microRNA profiling technologies applied on human breast cancer cell lines, PLoS ONE, 8, e75813, 10.1371/journal.pone.0075813
Valadi, 2007, Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nat. Cell Biol., 9, 654, 10.1038/ncb1596
Mitchell, 2008, Circulating microRNAs as stable blood-based markers for cancer detection, Proc. Natl. Acad. Sci. U. S. A., 105, 10513, 10.1073/pnas.0804549105
Kharaziha, 2012, Tumor cell-derived exosomes: a message in a bottle, Biochim. Biophys. Acta, 1826, 103
Hannafon, 2013, Intercellular communication by exosome-derived microRNAs in cancer, Int. J. Mol. Sci., 14, 14240, 10.3390/ijms140714240
Turchinovich, 2011, Characterization of extracellular circulating microRNA, Nucleic Acids Res., 39, 7223, 10.1093/nar/gkr254
Vickers, 2011, MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins, Nat. Cell Biol., 13, 423, 10.1038/ncb2210
Turchinovich, 2012, Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma, RNA Biol., 9, 1066, 10.4161/rna.21083
Kroh, 2010, Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR), Methods, 50, 298, 10.1016/j.ymeth.2010.01.032
Arroyo, 2011, Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma, Proc. Natl. Acad. Sci. U. S. A., 108, 5003, 10.1073/pnas.1019055108
Hergenreider, 2012, Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs, Nat. Cell Biol., 14, 249, 10.1038/ncb2441
Pegtel, 2010, Functional delivery of viral miRNAs via exosomes, Proc. Natl. Acad. Sci. U. S. A., 107, 6328, 10.1073/pnas.0914843107
Mittelbrunn, 2011, Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells, Nat. Commun., 2, 282, 10.1038/ncomms1285
Koppers-Lalic, 2014, Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes, Cell Rep., 8, 1649, 10.1016/j.celrep.2014.08.027
Azmi, 2013, Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review, Cancer Metastasis Rev., 32, 623, 10.1007/s10555-013-9441-9
van Rooij, 2014, Development of microRNA therapeutics is coming of age, EMBO Mol. Med., 6, 851, 10.15252/emmm.201100899
Li, 2014, Therapeutic targeting of microRNAs: current status and future challenges, Nat. Rev. Drug Discov., 13, 622, 10.1038/nrd4359
Chen, 2015, In vivo delivery of miRNAs for cancer therapy: challenges and strategies, Adv. Drug Deliv. Rev., 81C, 128, 10.1016/j.addr.2014.05.009
Bader, 2012, miR-34 — a microRNA replacement therapy is headed to the clinic, Front. Genet., 3, 120, 10.3389/fgene.2012.00120
Montgomery, 2014, MicroRNA mimicry blocks pulmonary fibrosis, EMBO Mol. Med., 6, 1347, 10.15252/emmm.201303604
Monroig, 2015, Small molecule compounds targeting miRNAs for cancer therapy, Adv. Drug Deliv. Rev., 81C, 104, 10.1016/j.addr.2014.09.002
Xiao, 2014, A small-molecule modulator of the tumor-suppressor miR34a inhibits the growth of hepatocellular carcinoma, Cancer Res., 74, 6236, 10.1158/0008-5472.CAN-14-0855
Shi, 2013, AC1MMYR2, an inhibitor of dicer-mediated biogenesis of Oncomir miR-21, reverses epithelial–mesenchymal transition and suppresses tumor growth and progression, Cancer Res., 73, 5519, 10.1158/0008-5472.CAN-13-0280
Shum, 2012, An image-based biosensor assay strategy to screen for modulators of the microRNA 21 biogenesis pathway, Comb. Chem. High Throughput Screen., 15, 529, 10.2174/138620712801619131
Connelly, 2014, Identification of inhibitors of microRNA function from small molecule screens, Methods Mol. Biol., 1095, 147, 10.1007/978-1-62703-703-7_12
Gumireddy, 2008, Small-molecule inhibitors of microRNA miR-21 function, Angew. Chem. Int. Ed. Engl., 47, 7482, 10.1002/anie.200801555
Young, 2010, Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma, J. Am. Chem. Soc., 132, 7976, 10.1021/ja910275u
Cai, 2014, Targeted genome editing tools for disease modeling and gene therapy, Curr. Gene Ther., 14, 2, 10.2174/156652321402140318165450
Marraffini, 2010, CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea, Nat. Rev. Genet., 11, 181, 10.1038/nrg2749
Jinek, 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816, 10.1126/science.1225829
Jinek, 2013, RNA-programmed genome editing in human cells, Elife, 2, e00471, 10.7554/eLife.00471
Mali, 2013, RNA-guided human genome engineering via Cas9, Science, 339, 823, 10.1126/science.1232033
Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819, 10.1126/science.1231143
Doudna, 2014, Genome editing. The new frontier of genome engineering with CRISPR-Cas9, Science, 346, 1258096, 10.1126/science.1258096
Long, 2014, Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA, Science, 345, 1184, 10.1126/science.1254445