Neuroimaging is the new “spatial omic”: multi-omic approaches to neuro-inflammation and immuno-thrombosis in acute ischemic stroke

Springer Science and Business Media LLC - Tập 45 - Trang 125-143 - 2023
Benjamin Maïer1,2,3,4, Amy S. Tsai5, Jakob F. Einhaus5, Jean-Philippe Desilles1,3,4, Benoît Ho-Tin-Noé3, Benjamin Gory6, Marina Sirota7,8, Richard Leigh9, Robin Lemmens10,11,12, Gregory Albers13, Jean-Marc Olivot14, Mikael Mazighi1,3,4,15, Brice Gaudillière5
1Interventional Neuroradiology Department, Hôpital Fondation A. de Rothschild, Paris, France
2Neurology Department, Hôpital Saint-Joseph, Paris, France
3Université Paris-Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
4FHU NeuroVasc, Paris, France
5Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford School of Medicine, Stanford, USA
6CHRU-Nancy, Department of Diagnostic and Therapeutic Neuroradiology, Université de Lorraine, Nancy, France
7Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, USA
8Department of Pediatrics, University of California, San Francisco, San Francisco USA
9Department of Neurology, Johns Hopkins University, Baltimore, USA
10Department of Neurology, University Hospitals Leuven, Leuven, Belgium
11Department of Neurosciences Division of Experimental Neurology, KU Leuven-University of Leuven, Leuven, Belgium
12VIB, Centre for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
13Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, USA
14Vascular Neurology Department, University Hospital of Toulouse, Toulouse, France
15Neurology Department, Lariboisière Hospital, Université Paris-Cité, Paris, France

Tóm tắt

Ischemic stroke (IS) is the leading cause of acquired disability and the second leading cause of dementia and mortality. Current treatments for IS are primarily focused on revascularization of the occluded artery. However, only 10% of patients are eligible for revascularization and 50% of revascularized patients remain disabled at 3 months. Accumulating evidence highlight the prognostic significance of the neuro- and thrombo-inflammatory response after IS. However, several randomized trials of promising immunosuppressive or immunomodulatory drugs failed to show positive results. Insufficient understanding of inter-patient variability in the cellular, functional, and spatial organization of the inflammatory response to IS likely contributed to the failure to translate preclinical findings into successful clinical trials. The inflammatory response to IS involves complex interactions between neuronal, glial, and immune cell subsets across multiple immunological compartments, including the blood-brain barrier, the meningeal lymphatic vessels, the choroid plexus, and the skull bone marrow. Here, we review the neuro- and thrombo-inflammatory responses to IS. We discuss how clinical imaging and single-cell omic technologies have refined our understanding of the spatial organization of pathobiological processes driving clinical outcomes in patients with an IS. We also introduce recent developments in machine learning statistical methods for the integration of multi-omic data (biological and radiological) to identify patient-specific inflammatory states predictive of IS clinical outcomes.

Tài liệu tham khảo

Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, Fisher M, Pandian J, Lindsay P (2022) World Stroke Organization (WSO): global stroke fact sheet 2022. Int J Stroke 17(1):18–29 Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, Davalos A, Majoie CB, van der Lugt A, de Miquel MA, Donnan GA, Roos YB, Bonafe A, Jahan R, Diener HC, van den Berg LA, Levy EI, Berkhemer OA, Pereira VM et al (2016) Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 387(10029):1723–1731 Iadecola C, Buckwalter MS, Anrather J (2020) Immune responses to stroke: mechanisms, modulation, and therapeutic potential. J Clin Invest 130(6):2777–2788 Shi K, Tian DC, Li ZG, Ducruet AF, Lawton MT, Shi FD (2019) Global brain inflammation in stroke. Lancet Neurol 18(11):1058–1066 Chamorro A, Meisel A, Planas AM, Urra X, van de Beek D, Veltkamp R (2012) The immunology of acute stroke. Nat Rev Neurol 8(7):401–410 De Meyer SF, Langhauser F, Haupeltshofer S, Kleinschnitz C, Casas AI (2022) Thromboinflammation in brain ischemia: recent updates and future perspectives. Stroke 53(5):1487–1499 Dreikorn M, Milacic Z, Pavlovic V, Meuth SG, Kleinschnitz C, Kraft P (2018) Immunotherapy of experimental and human stroke with agents approved for multiple sclerosis: a systematic review. Ther Adv Neurol Disord 11:1756286418770626 Buckley MW, McGavern DB (2022) Immune dynamics in the CNS and its barriers during homeostasis and disease. Immunol Rev 306(1):58–75 Alves de Lima K, Rustenhoven J, Kipnis J (2020) Meningeal immunity and its function in maintenance of the central nervous system in health and disease. Annu Rev Immunol 38:597–620 Croese T, Castellani G, Schwartz M (2021) Immune cell compartmentalization for brain surveillance and protection. Nat Immunol 22(9):1083–1092 Giladi A, Amit I (2018) Single-cell genomics: a stepping stone for future immunology discoveries. Cell 172(1–2):14–21 Medawar PB (1948) Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 29(1):58–69 Rustenhoven J, Drieu A, Mamuladze T, de Lima KA, Dykstra T, Wall M, Papadopoulos Z, Kanamori M, Salvador AF, Baker W, Lemieux M, Da Mesquita S, Cugurra A, Fitzpatrick J, Sviben S, Kossina R, Bayguinov P, Townsend RR, Zhang Q et al (2021) Functional characterization of the dural sinuses as a neuroimmune interface. Cell 184(4):1000–1016 Candelario-Jalil E, Dijkhuizen RM, Magnus T (2022) Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke 53(5):1473–1486 Mundt S, Greter M, Flugel A, Becher B (2019) The CNS immune landscape from the viewpoint of a T cell. Trends Neurosci 42(10):667–679 Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG, Leung BP, Lelios I, Heppner FL, Kipnis J, Merkler D, Greter M, Becher B (2018) High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48(2):380–395 Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341 Alves de Lima K, Rustenhoven J, Da Mesquita S, Wall M, Salvador AF, Smirnov I, Martelossi Cebinelli G, Mamuladze T, Baker W, Papadopoulos Z, Lopes MB, Cao WS, Xie XS, Herz J, Kipnis J (2020) Meningeal gammadelta T cells regulate anxiety-like behavior via IL-17a signaling in neurons. Nat Immunol 21(11):1421–1429 Filiano AJ, Gadani SP, Kipnis J (2017) How and why do T cells and their derived cytokines affect the injured and healthy brain? Nat Rev Neurosci 18(6):375–384 Ribeiro M, Brigas HC, Temido-Ferreira M, Pousinha PA, Regen T, Santa C, Coelho JE, Marques-Morgado I, Valente CA, Omenetti S, Stockinger B, Waisman A, Manadas B, Lopes LV, Silva-Santos B, Ribot JC (2019) Meningeal gammadelta T cell-derived IL-17 controls synaptic plasticity and short-term memory. Sci Immunol 4(40):eaay5199 Lin Y, Zhang JC, Yao CY, Wu Y, Abdelgawad AF, Yao SL, Yuan SY (2016) Critical role of astrocytic interleukin-17 A in post-stroke survival and neuronal differentiation of neural precursor cells in adult mice. Cell Death Dis 7(6):e2273 Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M (1999) Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 5(1):49–55 Mastorakos P, Mihelson N, Luby M, Burks SR, Johnson K, Hsia AW, Witko J, Frank JA, Latour L, McGavern DB (2021) Temporally distinct myeloid cell responses mediate damage and repair after cerebrovascular injury. Nat Neurosci 24(2):245–258 Russo MV, McGavern DB (2016) Inflammatory neuroprotection following traumatic brain injury. Science 353(6301):783–785 Mundt S, Mrdjen D, Utz SG, Greter M, Schreiner B, Becher B (2019) Conventional DCs sample and present myelin antigens in the healthy CNS and allow parenchymal T cell entry to initiate neuroinflammation. Sci Immunol 4(31) Herisson F, Frodermann V, Courties G, Rohde D, Sun Y, Vandoorne K, Wojtkiewicz GR, Masson GS, Vinegoni C, Kim J, Kim DE, Weissleder R, Swirski FK, Moskowitz MA, Nahrendorf M (2018) Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat Neurosci 21(9):1209–1217 Mazzitelli JA, Smyth LCD, Cross KA, Dykstra T, Sun J, Du S, Mamuladze T, Smirnov I, Rustenhoven J, Kipnis J (2022) Cerebrospinal fluid regulates skull bone marrow niches via direct access through dural channels. Nat Neurosci 25(5):555–560 Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, Arumugam TV, Orthey E, Gerloff C, Tolosa E, Magnus T (2009) Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 40(5):1849–1857 Gelderblom M, Weymar A, Bernreuther C, Velden J, Arunachalam P, Steinbach K, Orthey E, Arumugam TV, Leypoldt F, Simova O, Thom V, Friese MA, Prinz I, Holscher C, Glatzel M, Korn T, Gerloff C, Tolosa E, Magnus T (2012) Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood 120(18):3793–3802 Gelderblom M, Gallizioli M, Ludewig P, Thom V, Arunachalam P, Rissiek B, Bernreuther C, Glatzel M, Korn T, Arumugam TV, Sedlacik J, Gerloff C, Tolosa E, Planas AM, Magnus T (2018) IL-23 (interleukin-23)-producing conventional dendritic cells control the detrimental IL-17 (interleukin-17) response in stroke. Stroke 49(1):155–164 Benakis C, Brea D, Caballero S, Faraco G, Moore J, Murphy M, Sita G, Racchumi G, Ling L, Pamer EG, Iadecola C, Anrather J (2016) Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat Med 22(5):516–523 Kleinschnitz C, Schwab N, Kraft P, Hagedorn I, Dreykluft A, Schwarz T, Austinat M, Nieswandt B, Wiendl H, Stoll G (2010) Early detrimental T-cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation. Blood 115(18):3835–3842 Tsai AS, Berry K, Beneyto MM, Gaudilliere D, Ganio EA, Culos A, Ghaemi MS, Choisy B, Djebali K, Einhaus JF, Bertrand B, Tanada A, Stanley N, Fallahzadeh R, Baca Q, Quach LN, Osborn E, Drag L, Lansberg MG et al (2019) A year-long immune profile of the systemic response in acute stroke survivors. Brain 142(4):978–991 Lambertsen KL, Biber K, Finsen B (2012) Inflammatory cytokines in experimental and human stroke. J Cereb Blood Flow Metab 32(9):1677–1698 Doyle KP, Quach LN, Sole M, Axtell RC, Nguyen TV, Soler-Llavina GJ, Jurado S, Han J, Steinman L, Longo FM, Schneider JA, Malenka RC, Buckwalter MS (2015) B-lymphocyte-mediated delayed cognitive impairment following stroke. J Neurosci 35(5):2133–2145 Benakis C, Llovera G, Liesz A (2018) The meningeal and choroidal infiltration routes for leukocytes in stroke. Ther Adv Neurol Disord 11:1756286418783708 Perez-de-Puig I, Miro-Mur F, Ferrer-Ferrer M, Gelpi E, Pedragosa J, Justicia C, Urra X, Chamorro A, Planas AM (2015) Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol 129(2):239–257 Eash KJ, Greenbaum AM, Gopalan PK, Link DC (2010) CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J Clin Invest 120(7):2423–2431 Gaffen SL, Jain R, Garg AV, Cua DJ (2014) The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol 14(9):585–600 Llovera G, Benakis C, Enzmann G, Cai R, Arzberger T, Ghasemigharagoz A, Mao X, Malik R, Lazarevic I, Liebscher S, Erturk A, Meissner L, Vivien D, Haffner C, Plesnila N, Montaner J, Engelhardt B, Liesz A (2017) The choroid plexus is a key cerebral invasion route for T cells after stroke. Acta Neuropathol 134(6):851–868 Desilles JP, Loyau S, Syvannarath V, Gonzalez-Valcarcel J, Cantier M, Louedec L, Lapergue B, Amarenco P, Ajzenberg N, Jandrot-Perrus M, Michel JB, Ho-Tin-Noe B, Mazighi M (2015) Alteplase reduces downstream microvascular thrombosis and improves the benefit of large artery recanalization in stroke. Stroke 46(11):3241–3248 Desilles JP, Syvannarath V, Di Meglio L, Ducroux C, Boisseau W, Louedec L, Jandrot-Perrus M, Michel JB, Mazighi M, Ho-Tin-Noe B (2018) Downstream microvascular thrombosis in cortical venules is an early response to proximal cerebral arterial occlusion. J Am Heart Assoc 7(5) Desilles JP, Syvannarath V, Ollivier V, Journe C, Delbosc S, Ducroux C, Boisseau W, Louedec L, Di Meglio L, Loyau S, Jandrot-Perrus M, Potier L, Michel JB, Mazighi M, Ho-Tin-Noe B (2017) Exacerbation of thromboinflammation by hyperglycemia precipitates cerebral infarct growth and hemorrhagic transformation. Stroke 48(7):1932–1940 Maier B, Desilles JP, Mazighi M (2020) Intracranial hemorrhage after reperfusion therapies in acute ischemic stroke patients. Front Neurol 11(1666):599908 Maestrini I, Tagzirt M, Gautier S, Dupont A, Mendyk AM, Susen S, Tailleux A, Vallez E, Staels B, Cordonnier C, Leys D, Bordet R (2020) Analysis of the association of MPO and MMP-9 with stroke severity and outcome: cohort study. Neurology 95(1):e97–e108 Tay A, Tamam Y, Yokus B, Ustundag M, Orak M (2015) Serum myeloperoxidase levels in predicting the severity of stroke and mortality in acute ischemic stroke patients. Eur Rev Med Pharmacol Sci 19(11):1983–1988 Laridan E, Denorme F, Desender L, Francois O, Andersson T, Deckmyn H, Vanhoorelbeke K, De Meyer SF (2017) Neutrophil extracellular traps in ischemic stroke thrombi. Ann Neurol 82(2):223–232 Grosse GM, Blume N, Abu-Fares O, Gotz F, Ernst J, Leotescu A, Gabriel MM, van Gemmeren T, Worthmann H, Lichtinghagen R, Imker R, Falk CS, Weissenborn K, Schuppner R, de Buhr N (2022) Endogenous deoxyribonuclease activity and cell-free deoxyribonucleic acid in acute ischemic stroke: a cohort study. Stroke 53(4):1235–1244 Martinod K, Wagner DD (2014) Thrombosis: tangled up in NETs. Blood 123(18):2768–2776 Di Meglio L, Desilles JP, Ollivier V, Nomenjanahary MS, Di Meglio S, Deschildre C, Loyau S, Olivot JM, Blanc R, Piotin M, Bouton MC, Michel JB, Jandrot-Perrus M, Ho-Tin-Noe B, Mazighi M (2019) Acute ischemic stroke thrombi have an outer shell that impairs fibrinolysis. Neurology 93(18):e1686–e1698 Renu A, Millan M, San Roman L, Blasco J, Marti-Fabregas J, Terceno M, Amaro S, Serena J, Urra X, Laredo C, Barranco R, Camps-Renom P, Zarco F, Oleaga L, Cardona P, Castano C, Macho J, Cuadrado-Godia E, Vivas E et al (2022) Investigators, Effect of intra-arterial alteplase vs placebo following successful thrombectomy on functional outcomes in patients with large vessel occlusion acute ischemic stroke: the CHOICE randomized clinical trial. JAMA 327(9):826–835 Liesz A, Hu X, Kleinschnitz C, Offner H (2015) Functional role of regulatory lymphocytes in stroke: facts and controversies. Stroke 46(5):1422–1430 Schwartz M, Kipnis J (2004) Self and non-self discrimination is needed for the existence rather than deletion of autoimmunity: the role of regulatory T cells in protective autoimmunity. Cell Mol Life Sci 61(18):2285–2289 Baruch K, Deczkowska A, Rosenzweig N, Tsitsou-Kampeli A, Sharif AM, Matcovitch-Natan O, Kertser A, David E, Amit I, Schwartz M (2016) PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse models of Alzheimer’s disease. Nat Med 22(2):135–137 Bodhankar S, Chen Y, Lapato A, Dotson AL, Wang J, Vandenbark AA, Saugstad JA, Offner H (2015) PD-L1 monoclonal antibody treats ischemic stroke by controlling central nervous system inflammation. Stroke 46(10):2926–2934 Desilles JP, Rouchaud A, Labreuche J, Meseguer E, Laissy JP, Serfaty JM, Lapergue B, Klein IF, Guidoux C, Cabrejo L, Sirimarco G, Lavallee PC, Schouman-Claeys E, Amarenco P, Mazighi M (2013) Blood-brain barrier disruption is associated with increased mortality after endovascular therapy. Neurology 80(9):844–851 Bivard A, Kleinig T, Churilov L, Levi C, Lin L, Cheng X, Chen C, Aviv R, Choi PMC, Spratt NJ, Butcher K, Dong Q, Parsons M (2020) Permeability measures predict hemorrhagic transformation after ischemic stroke. Ann Neurol 88(3):466–476 Leigh R, Christensen S, Campbell BC, Marks MP, Albers GW, Lansberg MG, Investigators D (2016) Pretreatment blood-brain barrier disruption and post-endovascular intracranial hemorrhage. Neurology 87(3):263–269 Rubiera M, Garcia-Tornel A, Olive-Gadea M, Campos D, Requena M, Vert C, Pagola J, Rodriguez-Luna D, Muchada M, Boned S, Rodriguez-Villatoro N, Juega J, Deck M, Sanjuan E, Hernandez D, Pinana C, Tomasello A, Molina CA, Ribo M (2020) Computed tomography perfusion after thrombectomy: an immediate surrogate marker of outcome after recanalization in acute stroke. Stroke 51(6):1736–1742 Hom J, Dankbaar JW, Soares BP, Schneider T, Cheng SC, Bredno J, Lau BC, Smith W, Dillon WP, Wintermark M (2011) Blood-brain barrier permeability assessed by perfusion CT predicts symptomatic hemorrhagic transformation and malignant edema in acute ischemic stroke. AJNR Am J Neuroradiol 32(1):41–48 Simpkins AN, Dias C, Leigh R, I. (2016) National Institutes of Health Natural History of Stroke, Identification of reversible disruption of the human blood-brain barrier following acute ischemia. Stroke 47(9):2405–2408 Yu S, Liebeskind DS, Dua S, Wilhalme H, Elashoff D, Qiao XJ, Alger JR, Sanossian N, Starkman S, Ali LK, Scalzo F, Lou X, Yoo B, Saver JL, Salamon N, Wang DJ, Investigators US (2015) Postischemic hyperperfusion on arterial spin labeled perfusion MRI is linked to hemorrhagic transformation in stroke. J Cereb Blood Flow Metab 35(4):630–637 Ng FC, Churilov L, Yassi N, Kleinig TJ, Thijs V, Wu TY, Shah DG, Dewey HM, Sharma G, Desmond PM, Yan B, Parsons MW, Donnan GA, Davis SM, Mitchell PJ, Leigh R, Campbell BCV, Part E-IT (2022) Investigators, Microvascular dysfunction in blood-brain barrier disruption and hypoperfusion within the infarct posttreatment are associated with cerebral edema. Stroke 53(5):1597–1605 Rouchaud A, Pistocchi S, Blanc R, Engrand N, Bartolini B, Piotin M (2014) Predictive value of flat-panel CT for haemorrhagic transformations in patients with acute stroke treated with thrombectomy. J Neurointerv Surg 6(2):139–143 Warach S, Latour LL (2004) Evidence of reperfusion injury, exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker of early blood-brain barrier disruption. Stroke 35(11 Suppl 1):2659–2661 Nadareishvili Z, Luby M, Leigh R, Shah J, Lynch JK, Hsia AW, Benson RT, Latour LL (2018) An MRI hyperintense acute reperfusion marker is related to elevated peripheral monocyte count in acute ischemic stroke. J Neuroimaging 28(1):57–60 Verheggen ICM, Freeze WM, de Jong JJA, Jansen JFA, Postma AA, van Boxtel MPJ, Verhey FRJ, Backes WH (2021) Application of contrast-enhanced magnetic resonance imaging in the assessment of blood-cerebrospinal fluid barrier integrity. Neurosci Biobehav Rev 127:171–183 Anderson VC, Tagge IJ, Doud A, Li X, Springer CS Jr, Quinn JF, Kaye JA, Wild KV, Rooney WD (2022) DCE-MRI of brain fluid barriers: in vivo water cycling at the human choroid plexus. Tissue Barriers 10(1):1963143 Evans PG, Sokolska M, Alves A, Harrison IF, Ohene Y, Nahavandi P, Ismail O, Miranda E, Lythgoe MF, Thomas DL, Wells JA (2020) Non-invasive MRI of blood-cerebrospinal fluid barrier function. Nat Commun 11(1):2081 Klistorner S, Barnett MH, Parratt J, Yiannikas C, Graham SL, Klistorner A (2022) Choroid plexus volume in multiple sclerosis predicts expansion of chronic lesions and brain atrophy. Ann Clin Transl Neurol 9(10):1528–1537 Egorova N, Gottlieb E, Khlif MS, Spratt NJ, Brodtmann A (2019) Choroid plexus volume after stroke. Int J Stroke 14(9):923–930 Ricigliano VAG, Morena E, Colombi A, Tonietto M, Hamzaoui M, Poirion E, Bottlaender M, Gervais P, Louapre C, Bodini B, Stankoff B (2021) Choroid plexus enlargement in inflammatory multiple sclerosis: 3.0-T MRI and translocator protein PET evaluation. Radiology 301(1):166–177 Choi JD, Moon Y, Kim HJ, Yim Y, Lee S, Moon WJ (2022) Choroid plexus volume and permeability at brain MRI within the Alzheimer disease clinical spectrum. Radiology 304(3):635–645 Huang J, Tong J, Zhang P, Zhou Y, Li Y, Tan S, Wang Z, Yang F, Kochunov P, Chiappelli J, Tian B, Tian L, Hong LE, Tan Y (2022) Elevated salivary kynurenic acid levels related to enlarged choroid plexus and severity of clinical phenotypes in treatment-resistant schizophrenia. Brain Behav Immun 106:32–39 Eide PK, Valnes LM, Pripp AH, Mardal KA, Ringstad G (2020) Delayed clearance of cerebrospinal fluid tracer from choroid plexus in idiopathic normal pressure hydrocephalus. J Cereb Blood Flow Metab 40(9):1849–1858 Fleischer V, Gonzalez-Escamilla G, Ciolac D, Albrecht P, Kury P, Gruchot J, Dietrich M, Hecker C, Muntefering T, Bock S, Oshaghi M, Radetz A, Cerina M, Kramer J, Wachsmuth L, Faber C, Lassmann H, Ruck T, Meuth SG et al (2021) Translational value of choroid plexus imaging for tracking neuroinflammation in mice and humans. Proc Natl Acad Sci USA 118(36) Cogo A, Mangin G, Maier B, Callebert J, Mazighi M, Chabriat H, Launay JM, Huberfeld G, Kubis N (2021) Increased serum QUIN/KYNA is a reliable biomarker of post-stroke cognitive decline. Mol Neurodegener 16(1):7 Absinta M, Ha SK, Nair G, Sati P, Luciano NJ, Palisoc M, Louveau A, Zaghloul KA, Pittaluga S, Kipnis J, Reich DS (2017) Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. Elife 6 Ringstad G, Eide PK (2020) Cerebrospinal fluid tracer efflux to parasagittal dura in humans. Nat Commun 11(1):354 Jacob L, de Brito Neto J, Lenck S, Corcy C, Benbelkacem F, Geraldo LH, Xu Y, Thomas JM, El Kamouh MR, Spajer M, Potier MC, Haik S, Kalamarides M, Stankoff B, Lehericy S, Eichmann A, J.L. (2022) Thomas, Conserved meningeal lymphatic drainage circuits in mice and humans. J Exp Med 219(8) Zhou Y, Cai J, Zhang W, Gong X, Yan S, Zhang K, Luo Z, Sun J, Jiang Q, Lou M (2020) Impairment of the glymphatic pathway and putative meningeal lymphatic vessels in the aging human. Ann Neurol 87(3):357–369 Ding XB, Wang XX, Xia DH, Liu H, Tian HY, Fu Y, Chen YK, Qin C, Wang JQ, Xiang Z, Zhang ZX, Cao QC, Wang W, Li JY, Wu E, Tang BS, Ma MM, Teng JF, Wang XJ (2021) Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson’s disease. Nat Med 27(3):411–418 Wang X, Tian H, Liu H, Liang D, Qin C, Zhu Q, Meng L, Fu Y, Xu S, Zhai Y, Ding X, Wang X (2021) Impaired meningeal lymphatic flow in NMOSD patients with acute attack. Front Immunol 12:692051 Yanev P, Poinsatte K, Hominick D, Khurana N, Zuurbier KR, Berndt M, Plautz EJ, Dellinger MT, Stowe AM (2020) Impaired meningeal lymphatic vessel development worsens stroke outcome. J Cereb Blood Flow Metab 40(2):263–275 Gerhard A, Schwarz J, Myers R, Wise R, Banati RB (2005) Evolution of microglial activation in patients after ischemic stroke: a [11C](R)-PK11195 PET study. Neuroimage 24(2):591–595 Pappata S, Levasseur M, Gunn RN, Myers R, Crouzel C, Syrota A, Jones T, Kreutzberg GW, Banati RB (2000) Thalamic microglial activation in ischemic stroke detected in vivo by PET and [11C]PK1195. Neurology 55(7):1052–1054 Price CJ, Wang D, Menon DK, Guadagno JV, Cleij M, Fryer T, Aigbirhio F, Baron JC, Warburton EA (2006) Intrinsic activated microglia map to the peri-infarct zone in the subacute phase of ischemic stroke. Stroke 37(7):1749–1753 Morris RS, Simon Jones P, Alawneh JA, Hong YT, Fryer TD, Aigbirhio FI, Warburton EA, Baron JC (2018) Relationships between selective neuronal loss and microglial activation after ischaemic stroke in man. Brain 141(7):2098–2111 Gauberti M, De Lizarrondo SM, Vivien D (2016) The “inflammatory penumbra” in ischemic stroke: from clinical data to experimental evidence. Eur Stroke J 1(1):20–27 Ringstad G, Eide PK (2022) Molecular trans-dural efflux to skull bone marrow in humans with CSF disorders. Brain 145(4):1464–1472 Androvic P, Kirdajova D, Tureckova J, Zucha D, Rohlova E, Abaffy P, Kriska J, Valny M, Anderova M, Kubista M, Valihrach L (2020) Decoding the transcriptional response to ischemic stroke in young and aged mouse brain. Cell Rep 31(11):107777 Schurch CM, Bhate SS, Barlow GL, Phillips DJ, Noti L, Zlobec I, Chu P, Black S, Demeter J, McIlwain DR, Kinoshita S, Samusik N, Goltsev Y, Nolan GP (2020) Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. Cell 182(5):1341–1359 e19 McCaffrey EF, Donato M, Keren L, Chen Z, Delmastro A, Fitzpatrick MB, Gupta S, Greenwald NF, Baranski A, Graf W, Kumar R, Bosse M, Fullaway CC, Ramdial PK, Forgo E, Jojic V, Van Valen D, Mehra S, Khader SA et al (2022) The immunoregulatory landscape of human tuberculosis granulomas. Nat Immunol 23(2):318–329 Damond N, Engler S, Zanotelli VRT, Schapiro D, Wasserfall CH, Kusmartseva I, Nick HS, Thorel F, Herrera PL, Atkinson MA, Bodenmiller B (2019) A map of human type 1 diabetes progression by imaging mass cytometry. Cell Metab 29(3):755–768 e5 Dunkler D, Sanchez-Cabo F, Heinze G (2011) Statistical analysis principles for omics data. Methods Mol Biol 719:113–131 Tibshirani R, Hastie T, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction. Springer, New York Tibshirani R (1996) Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B (Methodological) 58(1):267–288 Ghaemi MS, DiGiulio DB, Contrepois K, Callahan B, Ngo TTM, Lee-McMullen B, Lehallier B, Robaczewska A, McIlwain D, Rosenberg-Hasson Y, Wong RJ, Quaintance C, Culos A, Stanley N, Tanada A, Tsai A, Gaudilliere D, Ganio E, Han X et al (2019) Multiomics modeling of the immunome, transcriptome, microbiome, proteome and metabolome adaptations during human pregnancy. Bioinformatics 35(1):95–103 Culos A, Tsai AS, Stanley N, Becker M, Ghaemi MS, McIlwain DR, Fallahzadeh R, Tanada A, Nassar H, Espinosa C, Xenochristou M, Ganio E, Peterson L, Han X, Stelzer IA, Ando K, Gaudilliere D, Phongpreecha T, Maric I et al (2020) Integration of mechanistic immunological knowledge into a machine learning pipeline improves predictions. Nat Mach Intell 2(10):619–628 Ding DY, Li S, Narasimhan B, Tibshirani R (2022) Cooperative learning for multiview analysis. Proc Natl Acad Sci U S A 119(38):e2202113119 Yin Q, Hung SC, Rathmell WK, Shen L, Wang L, Lin W, Fielding JR, Khandani AH, Woods ME, Milowsky MI, Brooks SA, Wallen EM, Shen D (2018) Integrative radiomics expression predicts molecular subtypes of primary clear cell renal cell carcinoma. Clin Radiol 73(9):782–791 Chaddad A, Daniel P, Sabri S, Desrosiers C, Abdulkarim B (2019) Integration of radiomic and multi-omic analyses predicts survival of newly diagnosed IDH1 wild-type glioblastoma. Cancers (Basel) 11(8) Zanfardino M, Franzese M, Pane K, Cavaliere C, Monti S, Esposito G, Salvatore M, Aiello M (2019) Bringing radiomics into a multi-omics framework for a comprehensive genotype-phenotype characterization of oncological diseases. J Transl Med 17(1):337