Interconnectedness and systemic risk network of Chinese financial institutions: A LASSO-CoVaR approach
Tài liệu tham khảo
Adrian, 2016, CoVaR, Amer. Econ. Rev., 106, 1705, 10.1257/aer.20120555
Hautsch, 2015, Financial network systemic risk contributions, Rev. Financ., 19, 685, 10.1093/rof/rfu010
Markose, 2012, ‘Too interconnected to fail’ financial network of US CDS market: Topological fragility and systemic risk, J. Econ. Behav. Organ., 83, 627, 10.1016/j.jebo.2012.05.016
Chan-Lau, 2018, Systemic centrality and systemic communities in financial networks, Quant. Financ. Econ., 2, 468, 10.3934/QFE.2018.2.468
Xu, 2018, Measuring systemic risk of the banking industry in China: A DCC-MIDAS-t approach, Pac.-Basin Finance J., 51, 13, 10.1016/j.pacfin.2018.05.009
Tibshirani, 1996, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B Stat. Methodol., 58, 267
Belloni, 2011, l1-penalized quantile regression in high-dimensional sparse models, Ann. Statist., 39, 82, 10.1214/10-AOS827
Acerbi, 2002, On the coherence of expected shortfall, J. Bank. Financ., 26, 1487, 10.1016/S0378-4266(02)00283-2
Wang, 2018, Interconnectedness and systemic risk of China’s financial institutions, Emerg. Mark. Rev, 35, 1, 10.1016/j.ememar.2017.12.001
Fang, 2018, Systemic risk network of Chinese financial institutions, Emerg. Mark. Rev, 35, 190, 10.1016/j.ememar.2018.02.003
Fan, 2018, Single-index-based CoVaR with very high-dimensional covariates, J. Bus. Econom. Statist., 36, 212, 10.1080/07350015.2016.1180990
Engle, 2004, CAViaR: conditional autoregressive value at risk by regression quantiles, J. Bus. Econom. Statist., 22, 367, 10.1198/073500104000000370
Xu, 2016, Quantile autoregression neural network model with applications to evaluating value at risk, Appl. Soft Comput., 46, 1, 10.1016/j.asoc.2016.08.003
López-Espinosa, 2012, Short-term wholesale funding and systemic risk: A global CoVaR approach, J. Bank. Financ., 36, 3150, 10.1016/j.jbankfin.2012.04.020
Girardi, 2013, Systemic risk measurement: Multivariate GARCH estimation of CoVaR, J. Bank. Financ., 37, 3169, 10.1016/j.jbankfin.2013.02.027
Mainik, 2014, On dependence consistency of CoVaR and some other systemic risk measures, Stat. Risk Model., 31, 49, 10.1515/strm-2013-1164
Yu, 2018, Risk contribution of the Chinese stock market to developed markets in the post-crisis period, Emerg. Mark. Rev, 34, 87, 10.1016/j.ememar.2017.10.006
Karimalis, 2018, Measuring systemic risk in the European banking sector: A Copula CoVaR approach, Eur. J. Financ., 24, 944, 10.1080/1351847X.2017.1366350
Ji, 2018, Risk spillover between energy and agricultural commodity markets: A dependence-switching CoVaR-copula model, Energy Econ., 75, 14, 10.1016/j.eneco.2018.08.015
de Mendonça, 2018, Effect of banking and macroeconomic variables on systemic risk: An application of ΔCOVAR for an emerging economy, N. Am. J. Econ. Financ., 43, 141, 10.1016/j.najef.2017.10.011
Fang, 2018, Identifying systemic important markets from a global perspective: Using the ADCC ΔCoVaR approach with skewed-t distribution, Finance Res. Lett., 24, 137, 10.1016/j.frl.2017.08.002
Acharya, 2017, Measuring systemic risk, Rev. Financ. Stud., 30, 2, 10.1093/rfs/hhw088
Acharya, 2012, Capital shortfall: A new approach to ranking and regulating systemic risks, Amer. Econ. Rev., 102, 59, 10.1257/aer.102.3.59
Brownlees, 2016, SRISK: A conditional capital shortfall measure of systemic risk, Rev. Financ. Stud., 30, 48, 10.1093/rfs/hhw060
Billio, 2012, Econometric measures of connectedness and systemic risk in the finance and insurance sectors, J. Financ. Econ., 104, 535, 10.1016/j.jfineco.2011.12.010
Huang, 2016, A financial network perspective of financial institutions systemic risk contributions, Physica A, 456, 183, 10.1016/j.physa.2016.03.034
Diebold, 2014, On the network topology of variance decompositions: Measuring the connectedness of financial firms, J. Econometrics, 182, 119, 10.1016/j.jeconom.2014.04.012
Kuzubaş, 2014, Network centrality measures and systemic risk: An application to the Turkish financial crisis, Physica A, 405, 203, 10.1016/j.physa.2014.03.006
Huang, 2018, A return spillover network perspective analysis of chinese financial institutions systemic importance, Physica A, 509, 405, 10.1016/j.physa.2018.06.035
Demirer, 2018, Estimating global bank network connectedness, J. Appl. Econometrics, 33, 1, 10.1002/jae.2585
Härdle, 2016, TENET: Tail-event driven NETwork risk, J. Econometrics, 192, 499, 10.1016/j.jeconom.2016.02.013
Brunetti, 2019, Interconnectedness in the interbank market, J. Financ. Econ., 133, 520, 10.1016/j.jfineco.2019.02.006
Battiston, 2016, Complexity theory and financial regulation, Science, 351, 818, 10.1126/science.aad0299
Gandy, 2017, A Bayesian methodology for systemic risk assessment in financial networks, Manage. Sci., 63, 4428, 10.1287/mnsc.2016.2546
Holland, 1981, An exponential family of probability distributions for directed graphs, J. Amer. Statist. Assoc., 76, 33, 10.1080/01621459.1981.10477598
Frank, 1986, Markov graphs, J. Amer. Statist. Assoc., 81, 832, 10.1080/01621459.1986.10478342
Robins, 2007, An introduction to exponential random graph models for social networks, Social Networks, 29, 173, 10.1016/j.socnet.2006.08.002
Hunter, 2008, Goodness of fit of social network models, J. Amer. Statist. Assoc., 103, 248, 10.1198/016214507000000446
Pircalabelu, 2016, Focused model selection for social networks, Social Networks, 46, 76, 10.1016/j.socnet.2016.03.002
Zou, 2006, The adaptive lasso and its oracle properties, J. Amer. Statist. Assoc., 101, 1418, 10.1198/016214506000000735
Koenker, 1978, Regression quantiles, Econometrica, 46, 33, 10.2307/1913643
Foroni, 2018, Using low frequency information for predicting high frequency variables, Int. J. Forecast., 34, 774, 10.1016/j.ijforecast.2018.06.004
Kupiec, 1995, Techniques for verifying the accuracy of risk measurement models, J. Deriv., 3, 10.3905/jod.1995.407942
Goodreau, 2009, Birds of a feather, or friend of a friend? Using exponential random graph models to investigate adolescent social networks, Demography, 46, 103, 10.1353/dem.0.0045
Del Brio, 2014, Semi-nonparametric VaR forecasts for hedge funds during the recent crisis, Physica A, 401, 330, 10.1016/j.physa.2014.01.037
Del Brio, 2017, The kidnapping of Europe: High-order moments’ transmission between developed and emerging markets, Emerg. Mark. Rev, 31, 96, 10.1016/j.ememar.2017.03.002