Aperiodic band-pass electrode enables record-performance transparent organic photovoltaics

Joule - Tập 6 - Trang 1918-1930 - 2022
Xin Liu1, Ziping Zhong1, Rihong Zhu1, Jiangsheng Yu1,2, Gang Li2
1MIIT Key Laboratory of Advanced Solid Laser, School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hong Kong, China

Tài liệu tham khảo

Forberich, 2015, Efficiency limits and color of semitransparent organic solar cells for application in building-integrated photovoltaics, Energy Technol, 3, 1051, 10.1002/ente.201500131 Bae, 2016, Printable solar cells from advanced solution-processible Materials, Chem, 1, 197, 10.1016/j.chempr.2016.07.010 Cheng, 2018, Next-generation organic photovoltaics based on non-fullerene acceptors, Nat. Photonics, 12, 131, 10.1038/s41566-018-0104-9 Hou, 2018, Organic solar cells based on non-fullerene acceptors, Nat. Mater., 17, 119, 10.1038/nmat5063 Li, 2018, Flexible and semitransparent organic solar cells, Adv. Energy Mater., 8 Shi, 2019, Spectral engineering of semitransparent polymer solar cells for greenhouse applications, Adv. Energy Mater., 9 Wang, 2021, A tandem organic photovoltaic cell with 19.6% efficiency enabled by light distribution control, Adv. Mater., 33 Zheng, 2022, Tandem organic solar cell with 20.2% efficiency, Joule, 6, 171, 10.1016/j.joule.2021.12.017 Ballif, 2018, Integrated thinking for photovoltaics in buildings, Nat. Energy, 3, 438, 10.1038/s41560-018-0176-2 Chang, 2018, Transparent polymer photovoltaics for solar energy harvesting and beyond, Joule, 2, 1039, 10.1016/j.joule.2018.04.005 Sun, 2018, Heat-insulating multifunctional semitransparent polymer solar cells, Joule, 2, 1816, 10.1016/j.joule.2018.06.006 Xue, 2018, Recent advances in semi-transparent polymer and perovskite solar cells for power generating window applications, Energy Environ. Sci., 11, 1688, 10.1039/C8EE00154E Liu, 2019, Unraveling sunlight by transparent organic semiconductors toward photovoltaic and photosynthesis, ACS Nano, 13, 1071, 10.1021/acsnano.8b08577 Li, 2020, Color-neutral, semitransparent organic photovoltaics for power window applications, Proc. Natl. Acad. Sci. USA, 117, 21147, 10.1073/pnas.2007799117 Pascual-San-José, 2020, Towards photovoltaic windows: scalable fabrication of semitransparent modules based on non-fullerene acceptors via laser-patterning, J. Mater. Chem. A, 8, 9882, 10.1039/D0TA02994G Ravishankar, 2020, Achieving net zero energy greenhouses by integrating semitransparent organic solar cells, Joule, 4, 490, 10.1016/j.joule.2019.12.018 Song, 2020, Foldable semitransparent organic solar cells for photovoltaic and photosynthesis, Adv. Energy Mater., 10, 10.1002/aenm.202000136 Zhang, 2020, High-performance semitransparent polymer solar cells floating on water: rational analysis of power generation, water evaporation and algal growth, Nano Energy, 77, 10.1016/j.nanoen.2020.105111 Wang, 2021, High-performance and eco-friendly semitransparent organic solar cells for greenhouse applications, Joule, 5, 945, 10.1016/j.joule.2021.02.010 Ravishankar, 2022, Organic solar powered greenhouse performance optimization and global economic opportunity, Energy Environ. Sci., 15, 1659, 10.1039/D1EE03474J Traverse, 2017, Emergence of highly transparent photovoltaics for distributed applications, Nat. Energy, 2, 849, 10.1038/s41560-017-0016-9 Czolk, 2013, Inverted Semi-transparent Polymer Solar Cells with Transparency Color Rendering Indices approaching 100, Adv. Energy Mater., 3, 386, 10.1002/aenm.201200532 Zhang, 2019, Highly efficient semitransparent organic solar cells with color rendering index approaching 100, Adv. Mater., 31 Hu, 2020, Semitransparent polymer solar cells with 12.37% efficiency and 18.6% average visible transmittance, Sci. Bull., 65, 131, 10.1016/j.scib.2019.09.016 Yin, 2020, Improving the charge transport of the ternary blend active layer for efficient semitransparent organic solar cells, Energy Environ. Sci., 13, 5177, 10.1039/D0EE03378B Lu, 2021, Hydrogen-bond-induced high performance semitransparent ternary organic solar cells with 14% efficiency and enhanced stability, Adv. Optical Mater., 9, 10.1002/adom.202100064 Zhu, 2011, Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors, ACS Nano, 5, 9877, 10.1021/nn203576v Beiley, 2013, Semi-transparent polymer solar cells with excellent sub-bandgap transmission for third generation photovoltaics, Adv. Mater., 25, 7020, 10.1002/adma.201301985 Chen, 2013, High-performance semi-transparent polymer solar cells possessing tandem structures, Energy Environ. Sci., 6, 2714, 10.1039/c3ee40860d Min, 2016, Fully solution-processed small molecule semitransparent solar cells: optimization of transparent cathode architecture and four absorbing layers, Adv. Funct. Mater., 26, 4543, 10.1002/adfm.201505411 Ji, 2018, Fully coated semitransparent organic solar cells with a doctor-blade-coated composite anode buffer layer of phosphomolybdic acid and PEDOT:PSS and a spray-coated silver nanowire top electrode, ACS Appl. Mater. Interfaces, 10, 943, 10.1021/acsami.7b13346 Jeong, 2021, Rational design of highly efficient semi-transparent organic photovoltaics with silver nanowire top electrode via 3D optical simulation study, Adv. Energy Mater., 11, 10.1002/aenm.202102397 Dong, 2010, All-spin-coating vacuum-free processed semi-transparent inverted polymer solar cells with PEDOT:PSS anode and PAH-D interfacial layer, Org. Electron., 11, 1327, 10.1016/j.orgel.2010.04.012 Fan, 2016, Transfer-printed PEDOT:PSS Electrodes Using mild acids for high conductivity and improved stability with application to flexible organic solar cells, ACS Appl. Mater. Interfaces, 8, 14029, 10.1021/acsami.6b01389 Bauer, 2012, ZnO:Al cathode for highly efficient, semitransparent 4% organic solar cells utilizing TiOx and aluminum interlayers, Appl. Phys. Lett., 100, 10.1063/1.3685718 Liu, 2015, Neutral-color semitransparent organic solar cells with all-graphene electrodes, ACS Nano, 9, 12026, 10.1021/acsnano.5b04858 Song, 2016, Visibly-transparent organic solar cells on flexible substrates with all-graphene electrodes, Adv. Energy Mater., 6, 10.1002/aenm.201600847 Shin, 2018, Semitransparent flexible organic solar cells employing doped-graphene layers as anode and cathode electrodes, ACS Appl. Mater. Interfaces, 10, 3596, 10.1021/acsami.7b16730 Lunt, 2012, Theoretical limits for visibly transparent photovoltaics, Appl. Phys. Lett., 101, 10.1063/1.4738896 Zuo, 2019, Highly efficient semitransparent solar cells with selective absorption and tandem architecture, Adv. Mater., 31, 10.1002/adma.201901683 Li, 2021, High-performance semi-transparent organic photovoltaic devices via improving absorbing selectivity, Adv. Energy Mater., 11 Betancur, 2013, Transparent polymer solar cells employing a layered light-trapping architecture, Nat. Photonics, 7, 995, 10.1038/nphoton.2013.276 Xia, 2019, High-throughput optical screening for efficient semitransparent organic solar cells, Joule, 3, 2241, 10.1016/j.joule.2019.06.016 Zhang, 2016, Colorful semitransparent polymer solar cells employing a bottom periodic one-dimensional photonic crystal and a top conductive PEDOT:PSS layer, J. Mater. Chem. A, 4, 11821, 10.1039/C6TA05249E Li, 2019, Enhanced light utilization in semitransparent organic photovoltaics using an optical outcoupling architecture, Adv. Mater., 31 Shen, 2019, Colored semitransparent polymer solar cells with a power conversion efficiency of 9.36% achieved by controlling the optical Tamm state, J. Mater. Chem. A, 7, 4102, 10.1039/C9TA00227H Liu, 2021, High-performance bifacial semitransparent organic photovoltaics featuring a decently transparent TeO2/Ag electrode, Mater. Chem. Front., 5, 8197, 10.1039/D1QM01142A Zuo, 2022, Dilution effect for highly efficient multiple-component organic solar cells, Nat. Nanotechnol., 17, 53, 10.1038/s41565-021-01011-1 Li, 2022, Mechanism study on organic ternary photovoltaics with 18.3% certified efficiency: from molecule to device, Energy Environ. Sci., 15, 855, 10.1039/D1EE02977K Kyaw, 2013, Intensity dependence of current-voltage characteristics and recombination in high-efficiency solution-processed small-molecule solar cells, ACS Nano, 7, 4569, 10.1021/nn401267s Koster, 2005, Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells, Appl. Phys. Lett., 86, 10.1063/1.1889240