Density stability estimation method from pre-stack seismic data

Journal of Petroleum Science and Engineering - Tập 208 - Trang 109373 - 2022
Zhaoyun Zong1, Qianhao Sun1
1China University of Petroleum, Qingdao, Shandong, China

Tài liệu tham khảo

Aki, 1980 Aleardi, 2018, Estimating petrophysical reservoir properties through extended elasti impedance inversion: applications to off-shore and on-shore reflection seismic data, J. Geophys. Eng., 15, 2079, 10.1088/1742-2140/aac54b Alebouyeh, 2018, Application of extended elastic (EEI) inversion to reservori from non-reservoir discrimination of Ghar reservoir in one Iranian oil field within Persian Gulf, J. Geophys. Eng., 15, 1204, 10.1088/1742-2140/aaac50 Alfred, 2013, A new petrophysical model for organic shales, Petrophyiscs, 54, 240 Bachrach, 2006, Joint estimation of porosity and saturation using stochastic rock-physics modeling, Geophysics, 71, O53, 10.1190/1.2235991 Behura, 2010, Density extraction from P-wave AVO inversion: tuscaloosa Trend example, Lead. Edge, 29, 772, 10.1190/1.3462777 Bosch, 2009, Petrophysical seismic inversion conditioned to well-log data: methods and application to a gas reservoir, Geophysics, 74, O1, 10.1190/1.3043796 Cheng, 2018, Third-order AVO inversion for lamé parameter based on inverse operator estimation algorithm, J. Petrol. Sci. Eng., 164, 117, 10.1016/j.petrol.2018.01.044 Cheng, 2019, Nonlinear elastic impedance inversion in the complex frequency domain based on an exact reflection coefficient, J. Petrol. Sci. Eng., 178, 97, 10.1016/j.petrol.2019.03.023 Connolly, 1999, Elastic impedance, Lead. Edge, 18, 435, 10.1190/1.1438307 Downton, 2005 Doyen, 1988, Porosity from seismic data: a geostatistical approach, Geophysics, 53, 1263, 10.1190/1.1442404 Eidsvik, 2004, Stochastic reservoir characterization using prestack seismic data, Geophysics, 69, 978, 10.1190/1.1778241 Fatti, 1994, Detection of gas in sandstone reservoirs using AVO analysis: a 3-D seismic case history using the Geostack technique, Geophysics, 59, 1362, 10.1190/1.1443695 Gidlow, 1993, Hydrocarbon detection using fluid factor traces: a case study Gogoi, 2019, Estimation of petrophysical parameters using seismic inversion and neural network modeling in Upper Assam basin, India, Geosci. Front., 10, 1113, 10.1016/j.gsf.2018.07.002 González, 2008, Seismic inversion combining rock physics and multiple-point geostatistics, Geophysics, 73, R11, 10.1190/1.2803748 Grana, 2010, Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion, Geophysics, 75, O21, 10.1190/1.3386676 Gray, 1999, 852 Iturrarán-Viveros, 2012, Smooth regression to estimate effective porosity using seismic attributes, J. Appl. Geophys., 76, 1, 10.1016/j.jappgeo.2011.10.012 Iturrarán-Viveros, 2014, Artificial neural networks applied to estimate permeability, porosity and intrinsic attenuation using seismic attributes and well-log data, J. Appl. Geophys., 107, 45, 10.1016/j.jappgeo.2014.05.010 Kabir, 2006, Can hydrocarbon saturation be estimated using density contrast parameter?, CSEG Recorder, C31 Lang, 2017, Geostatistical inversion of prestack seismic data for the joint estimation of facies and impedances using stochastic sampling from Gaussian mixture posterior distributions, Geophysics, 82, M55, 10.1190/geo2016-0670.1 Le, 2020, Bernstein copula-based spatial cosimulation for petrophysical property prediction conditioned to elastic attributes, J. Petrol. Sci. Eng., 193, 107382, 10.1016/j.petrol.2020.107382 Li, 2005, 1646 Lines, 1998, Density contrast is difficult to determine from AVO, CREWES Research Report, 10, 8 Li, 2017, Pre-stack Bayesian cascade AVA inversion in complex-Laplace domain and its application to the broadband data acquired at East China, J. Petrol. Sci. Eng., 158, 751, 10.1016/j.petrol.2017.09.005 Li, 2020, Facies-constrained prestack seismic probabilistic inversion driven by rock physics, Sci. China Earth Sci., 63, 822, 10.1007/s11430-019-9578-1 Li, 2019, Robust pre-stack density inversion method for shale reservoir, Chin. J. Geophys., 62, 1861 Lim, 2017, 728 Liu, 2018, Direct reservoir property estimation based on prestack seismic inversion, J. Petrol. Sci. Eng., 171, 1475, 10.1016/j.petrol.2018.08.028 Lu, 2015, Joint PP and PS AVA seismic inversion using exact Zoeppritz equations, Geophysics, 80, R239, 10.1190/geo2014-0490.1 Maurya, 2019, Predicting porosity by multivariate regression and probabilistic neural network using model-based and coloured inversion as external attributes: a quantitative comparison, J. Geol. Soc. India, 93, 207, 10.1007/s12594-019-1153-5 Mukerji, 2001, Mapping lithofacies and pore-fluid probabilities in North Sea reservoir: seismic inversions and statistical rock physics, Geophysics, 66, 988, 10.1190/1.1487078 Oloruntobi, 2019, The new formation bulk density predictions for siliciclastic rocks, J. Petrol. Sci. Eng., 180, 526, 10.1016/j.petrol.2019.05.017 Padhi, 2012, Accurate estimation of density from the inversion of multicomponent prestack seismic waveform data using a nondominated sorting genetic algorithm, Lead. Edge, 32, 94 Quijada, 2007, Density estimations using density-velocity relations and seismic inversion, CREWES Research Report, 19, 1 Russell, 2003, Fluid-property discrimination with AVO: a Biot-Gassmann perspective, Geophysics, 68, 29, 10.1190/1.1543192 Russell, 2011, Linearized AVO and poroelasticity, Geophysics, 76, C19, 10.1190/1.3555082 Rutherford, 1989, Amplitude-versus-offset variations in gas sands, Geophysics, 54, 680, 10.1190/1.1442696 Satti, 2015, Origin of overpressure in a field in the Southwestern Malay basin, SPE Drill. Complet., 30, 198, 10.2118/176034-PA Schmoker, 1979, Determination of organic content of Appalachian Devonian shales from formation density log, AAPG (Am. Assoc. Pet. Geol.) Bull., 63, 1504 Sharma, 2015, 2708 Sharma, 2017, 2371 Simmons, 1996, Waveform-based AVO inversion and AVO prediction‐error, Geophysics, 61, 1575, 10.1190/1.1444077 Sun, 2019, The reliable estimation of density from pre-stack seismic data based on the independent, 3503 Tarantola, 1987 Ursin, 1996, The information content of the elastic reflection matrix, Geophys. J. Int., 125, 214, 10.1111/j.1365-246X.1996.tb06547.x Van Koughnet, 2003, Prospecting with the density cube, Lead. Edge, 22, 1038, 10.1190/1.1623646 Whitcombe, 2002, Elastic impedance normalization, Geophysics, 67, 60, 10.1190/1.1451331 Whitcombe, 2002, Extended elastic impedance for fluid and lithology prediction, Geophysics, 67, 63, 10.1190/1.1451337 Yin, 2014, Petrophysical property inversion of reservoirs based on elastic impedance, Chin. J. Geophys., 57, 4132 Yin, 2008, 2041 Yin, 2014, Bayesian inversion for effective pore-fluid bulk modulus based on fluid-matrix decoupled amplitude variation with offset approximation, Geophysics, 79, R221, 10.1190/geo2013-0372.1 Zhang, 2011, Pore pressure prediction from well logs: methods, modifications, and new approaches, Earth Sci. Rev., 108, 50, 10.1016/j.earscirev.2011.06.001 Zhang, 2013, Effective stress, porosity, velocity and abnormal pore pressure prediction accounting for disequilibrium and unloading, Mar. Petrol. Geol., 45, 2, 10.1016/j.marpetgeo.2013.04.007 Zhang, 2017, 662 Zhi, 2016, Amplitude variation with angle inversoin using the exact Zoeppritz equation-theroy and methodology, Gephyisics, 81, N1, 10.1190/geo2014-0582.1 Zoeppritz, 1919, On the reflection and penetration of seismic waves through unstable layers, Göttinger Nachrichten, 1, 66 Zong, 2016, Direct inversion of Young's and Poisson impedances for fluid discrimination, Geofluids, 16, 1006, 10.1111/gfl.12202 Zong, 2012, AVO inversion and poroelasticity with P- and S-wave moduli, Geophysics, 77, N17, 10.1190/geo2011-0214.1 Zong, 2013, Multi-parameter nonlinear inversion with exact reflection coefficient equation, J. Appl. Geophys., 98, 23 Zong, 2015, Geofluid discrimination incorporating poroelasticity and seismic reflection inversion, Surv. Geophys., 36, 659, 10.1007/s10712-015-9330-6