Density stability estimation method from pre-stack seismic data
Tài liệu tham khảo
Aki, 1980
Aleardi, 2018, Estimating petrophysical reservoir properties through extended elasti impedance inversion: applications to off-shore and on-shore reflection seismic data, J. Geophys. Eng., 15, 2079, 10.1088/1742-2140/aac54b
Alebouyeh, 2018, Application of extended elastic (EEI) inversion to reservori from non-reservoir discrimination of Ghar reservoir in one Iranian oil field within Persian Gulf, J. Geophys. Eng., 15, 1204, 10.1088/1742-2140/aaac50
Alfred, 2013, A new petrophysical model for organic shales, Petrophyiscs, 54, 240
Bachrach, 2006, Joint estimation of porosity and saturation using stochastic rock-physics modeling, Geophysics, 71, O53, 10.1190/1.2235991
Behura, 2010, Density extraction from P-wave AVO inversion: tuscaloosa Trend example, Lead. Edge, 29, 772, 10.1190/1.3462777
Bosch, 2009, Petrophysical seismic inversion conditioned to well-log data: methods and application to a gas reservoir, Geophysics, 74, O1, 10.1190/1.3043796
Cheng, 2018, Third-order AVO inversion for lamé parameter based on inverse operator estimation algorithm, J. Petrol. Sci. Eng., 164, 117, 10.1016/j.petrol.2018.01.044
Cheng, 2019, Nonlinear elastic impedance inversion in the complex frequency domain based on an exact reflection coefficient, J. Petrol. Sci. Eng., 178, 97, 10.1016/j.petrol.2019.03.023
Connolly, 1999, Elastic impedance, Lead. Edge, 18, 435, 10.1190/1.1438307
Downton, 2005
Doyen, 1988, Porosity from seismic data: a geostatistical approach, Geophysics, 53, 1263, 10.1190/1.1442404
Eidsvik, 2004, Stochastic reservoir characterization using prestack seismic data, Geophysics, 69, 978, 10.1190/1.1778241
Fatti, 1994, Detection of gas in sandstone reservoirs using AVO analysis: a 3-D seismic case history using the Geostack technique, Geophysics, 59, 1362, 10.1190/1.1443695
Gidlow, 1993, Hydrocarbon detection using fluid factor traces: a case study
Gogoi, 2019, Estimation of petrophysical parameters using seismic inversion and neural network modeling in Upper Assam basin, India, Geosci. Front., 10, 1113, 10.1016/j.gsf.2018.07.002
González, 2008, Seismic inversion combining rock physics and multiple-point geostatistics, Geophysics, 73, R11, 10.1190/1.2803748
Grana, 2010, Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion, Geophysics, 75, O21, 10.1190/1.3386676
Gray, 1999, 852
Iturrarán-Viveros, 2012, Smooth regression to estimate effective porosity using seismic attributes, J. Appl. Geophys., 76, 1, 10.1016/j.jappgeo.2011.10.012
Iturrarán-Viveros, 2014, Artificial neural networks applied to estimate permeability, porosity and intrinsic attenuation using seismic attributes and well-log data, J. Appl. Geophys., 107, 45, 10.1016/j.jappgeo.2014.05.010
Kabir, 2006, Can hydrocarbon saturation be estimated using density contrast parameter?, CSEG Recorder, C31
Lang, 2017, Geostatistical inversion of prestack seismic data for the joint estimation of facies and impedances using stochastic sampling from Gaussian mixture posterior distributions, Geophysics, 82, M55, 10.1190/geo2016-0670.1
Le, 2020, Bernstein copula-based spatial cosimulation for petrophysical property prediction conditioned to elastic attributes, J. Petrol. Sci. Eng., 193, 107382, 10.1016/j.petrol.2020.107382
Li, 2005, 1646
Lines, 1998, Density contrast is difficult to determine from AVO, CREWES Research Report, 10, 8
Li, 2017, Pre-stack Bayesian cascade AVA inversion in complex-Laplace domain and its application to the broadband data acquired at East China, J. Petrol. Sci. Eng., 158, 751, 10.1016/j.petrol.2017.09.005
Li, 2020, Facies-constrained prestack seismic probabilistic inversion driven by rock physics, Sci. China Earth Sci., 63, 822, 10.1007/s11430-019-9578-1
Li, 2019, Robust pre-stack density inversion method for shale reservoir, Chin. J. Geophys., 62, 1861
Lim, 2017, 728
Liu, 2018, Direct reservoir property estimation based on prestack seismic inversion, J. Petrol. Sci. Eng., 171, 1475, 10.1016/j.petrol.2018.08.028
Lu, 2015, Joint PP and PS AVA seismic inversion using exact Zoeppritz equations, Geophysics, 80, R239, 10.1190/geo2014-0490.1
Maurya, 2019, Predicting porosity by multivariate regression and probabilistic neural network using model-based and coloured inversion as external attributes: a quantitative comparison, J. Geol. Soc. India, 93, 207, 10.1007/s12594-019-1153-5
Mukerji, 2001, Mapping lithofacies and pore-fluid probabilities in North Sea reservoir: seismic inversions and statistical rock physics, Geophysics, 66, 988, 10.1190/1.1487078
Oloruntobi, 2019, The new formation bulk density predictions for siliciclastic rocks, J. Petrol. Sci. Eng., 180, 526, 10.1016/j.petrol.2019.05.017
Padhi, 2012, Accurate estimation of density from the inversion of multicomponent prestack seismic waveform data using a nondominated sorting genetic algorithm, Lead. Edge, 32, 94
Quijada, 2007, Density estimations using density-velocity relations and seismic inversion, CREWES Research Report, 19, 1
Russell, 2003, Fluid-property discrimination with AVO: a Biot-Gassmann perspective, Geophysics, 68, 29, 10.1190/1.1543192
Russell, 2011, Linearized AVO and poroelasticity, Geophysics, 76, C19, 10.1190/1.3555082
Rutherford, 1989, Amplitude-versus-offset variations in gas sands, Geophysics, 54, 680, 10.1190/1.1442696
Satti, 2015, Origin of overpressure in a field in the Southwestern Malay basin, SPE Drill. Complet., 30, 198, 10.2118/176034-PA
Schmoker, 1979, Determination of organic content of Appalachian Devonian shales from formation density log, AAPG (Am. Assoc. Pet. Geol.) Bull., 63, 1504
Sharma, 2015, 2708
Sharma, 2017, 2371
Simmons, 1996, Waveform-based AVO inversion and AVO prediction‐error, Geophysics, 61, 1575, 10.1190/1.1444077
Sun, 2019, The reliable estimation of density from pre-stack seismic data based on the independent, 3503
Tarantola, 1987
Ursin, 1996, The information content of the elastic reflection matrix, Geophys. J. Int., 125, 214, 10.1111/j.1365-246X.1996.tb06547.x
Van Koughnet, 2003, Prospecting with the density cube, Lead. Edge, 22, 1038, 10.1190/1.1623646
Whitcombe, 2002, Elastic impedance normalization, Geophysics, 67, 60, 10.1190/1.1451331
Whitcombe, 2002, Extended elastic impedance for fluid and lithology prediction, Geophysics, 67, 63, 10.1190/1.1451337
Yin, 2014, Petrophysical property inversion of reservoirs based on elastic impedance, Chin. J. Geophys., 57, 4132
Yin, 2008, 2041
Yin, 2014, Bayesian inversion for effective pore-fluid bulk modulus based on fluid-matrix decoupled amplitude variation with offset approximation, Geophysics, 79, R221, 10.1190/geo2013-0372.1
Zhang, 2011, Pore pressure prediction from well logs: methods, modifications, and new approaches, Earth Sci. Rev., 108, 50, 10.1016/j.earscirev.2011.06.001
Zhang, 2013, Effective stress, porosity, velocity and abnormal pore pressure prediction accounting for disequilibrium and unloading, Mar. Petrol. Geol., 45, 2, 10.1016/j.marpetgeo.2013.04.007
Zhang, 2017, 662
Zhi, 2016, Amplitude variation with angle inversoin using the exact Zoeppritz equation-theroy and methodology, Gephyisics, 81, N1, 10.1190/geo2014-0582.1
Zoeppritz, 1919, On the reflection and penetration of seismic waves through unstable layers, Göttinger Nachrichten, 1, 66
Zong, 2016, Direct inversion of Young's and Poisson impedances for fluid discrimination, Geofluids, 16, 1006, 10.1111/gfl.12202
Zong, 2012, AVO inversion and poroelasticity with P- and S-wave moduli, Geophysics, 77, N17, 10.1190/geo2011-0214.1
Zong, 2013, Multi-parameter nonlinear inversion with exact reflection coefficient equation, J. Appl. Geophys., 98, 23
Zong, 2015, Geofluid discrimination incorporating poroelasticity and seismic reflection inversion, Surv. Geophys., 36, 659, 10.1007/s10712-015-9330-6