Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction

Nature Genetics - Tập 42 Số 12 - Trang 1068-1076 - 2010
Nona Sotoodehnia1, Aaron Isaacs2,3, Paul I.W. de Bakker4,5,6, Marcus Dörr7, Christopher Newton‐Cheh8,9, Ilja M. Nolte10, Pim van der Harst11, Martina Müller‐Nurasyid12,13,14, Mark Eijgelsheim15, Álvaro Alonso16, Andrew A. Hicks17, Sandosh Padmanabhan18, Caroline Hayward19, Albert Hofman20,21, Ozren Polašek22, Steven Giovannone23, Jingyuan Fu24, Jared W. Magnani9,25, Kristin D. Marciante26, Arne Pfeufer17,27,28, Sina A. Gharib29, Alexander Teumer30, Man Li31, Joshua C. Bis26, Fernando Rivadeneira15,32, Thor Aspelund20,21, Anna Köttgen33, Toby Johnson34,35, Kenneth Rice36, Mark P.S. Sie3, Ying A. Wang37,9, Norman Klopp13, Christian Fuchsberger17, Sarah H. Wild38, Irene Espósito11, Karol Estrada32, Uwe Völker30, Alan F. Wright19, Folkert W. Asselbergs39,11, Jiaxiang Qu23, Aravinda Chakravarti40, Moritz F. Sinner12, Jan A. Kors41, Astrid Petersmann42, Tamara B. Harris43, Elsayed Z. Soliman44, Patricia B. Munroe34,35, Bruce M. Psaty26,45, Yoav Ben‐Shlomo2,46, L. Adrienne Cupples37,9, Siegfried Perz47, Rudolf A. de Boer11, André G. Uitterlinden15,32,48, Henry Völzke49, Tim D. Spector50, Fang-Yu Liu23, Eric Boerwinkle51, Anna F. Dominiczak18, Jerome I. Rotter52, G. van Herpen41, Daniel Lévy9, H‐Erich Wichmann13,14,53, Wiek H. van Gilst11, Jacqueline R. Center15,48, Heyo K. Kroemer54, W.H. Linda Kao31, Susan R. Heckbert26,45, Thomas Meitinger27,28, Harry Hemingway38, Aaron R. Folsom16, Dirk J. van Veldhuisen11, Christine Schwienbacher55,17, Christopher J. O’Donnell9, Cláudia B. Volpato17, Mark J. Caulfield34,35, John Connell56, Lenore J. Launer43, Xiaowen Lu10, Lude Franke57,24, Rudolf S.N. Fehrmann24, Gerard te Meerman24, Harry J.M. Groen58, Rinse K. Weersma59, Leonard H. van den Berg60, Cisca Wijmenga24, Roel A. Ophoff61,62, Gerjan Navis63, Igor Rudan64,38,65, Harold Snieder10,50, James F. Wilson38, Peter P. Pramstaller66,67,17, David S. Siscovick26, Thomas J. Wang68,9, Vilmundur Guðnason20,21, Cornelia M. van Duijn2,3,48, Stephan B. Felix7, Glenn I. Fishman23, Yalda Jamshidi50,69, Bruno H. Stricker32,41,70,48, Nilesh J. Samani71,72, Stefan Kääb12, Dan E. Arking40
1Division of Cardiology, Department of Medicine, University of Washington, Seattle, USA
2Centre for Medical Systems Biology, Leiden, The Netherlands
3Department of Epidemiology, Genetic Epidemiology Unit, Erasmus Medical Center (MC), Rotterdam, The Netherlands
4Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
5Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, The Netherlands
6Program in Medical and Population Genetics, Broad Institute, Cambridge, USA
7Department of Internal Medicine B, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
8Center for Human Genetic Research, Massachusetts General Hospital, Boston, USA
9National Heart, Lung, and Blood Institute's (NHLBI) Framingham Heart Study, Framingham, USA
10Department of Epidemiology, Unit of Genetic Epidemiology and Bioinformatics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
11Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands
12Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität, Munich, Germany
13Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
14Institute of Medical Informatics, Biometry, and Epidemiology, Chair of Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
15Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
16Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
17Institute of Genetic Medicine, European Academy Bozen-Bolzano (EURAC), Bolzano, Italy, affiliated institute of the University of Lübeck, Germany.,
18Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Place, Glasgow, UK
19Medical Research Council (MRC) Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh, UK
20Icelandic Heart Association, Kopavogur, Iceland
21University of Iceland, Reykjavik, Iceland
22Andrija Stampar School of Public Health, Medical School, University of Zagreb, Zagreb, Croatia
23Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, USA
24Department of Genetics, University Medical Center Groningen, University of Groningen, The Netherlands
25Section of Cardiovascular Medicine, Boston University School of Medicine, Boston, USA
26Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, USA
27Institute of Human Genetics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
28Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
29Department of Medicine, Center for Lung Biology, University of Washington, Seattle, USA
30Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
31Department of Epidemiology and the Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore, USA
32Department of Internal Medicine, Rotterdam, The Netherlands
33Department of Epidemiology, Johns Hopkins University, Baltimore, USA
34Barts and the London National Institute of Health Research Cardiovascular Biomedical Research Unit, London, UK
35Clinical Pharmacology and Barts and the London Genome Centre, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
36Department of Biostatistics, University of Washington, Seattle, USA
37Department of Biostatistics, Boston University School of Public Health, Boston, USA
38Centre for Population Health Sciences, University of Edinburgh, Edinburgh
39Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
40McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
41Department of Medical Informatics, Erasmus MC, Rotterdam, the Netherlands
42Institute of Clinical Chemistry and Laboratory Medicine, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
43Laboratory of Epidemiology, Demography and Biometry, National Institute on Aging, National Institutes of Health, Bethesda, USA
44Epidemiological Cardiology Research Center (EPICARE), Wake Forest University School of Medicine, Winston Salem, USA
45Group Health Research Institute, Group Health Cooperative, Seattle, USA
46Department of Clinical Genetics, Rotterdam, The Netherlands
47Institute for Biological and Medical Imaging, Helmholtz Zentrum München-German Research Center for Environmental Health,, Neuherberg, Germany
48Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, The Netherlands
49Institute for Community Medicine, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
50Department of Twin Research and Genetic Epidemiology Unit, St. Thomas' Campus, King's College London, St. Thomas' Hospital, London, UK
51Institute for Molecular Medicine, University of Texas Health Science Center at Houston, Houston, USA
52Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, USA
53Klinikum Grosshadern, Munich, Germany
54Department of Pharmacology, Center for Pharmacology and Experimental Therapeutics, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
55Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy
56University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
57Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
58Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
59Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
60Department of Neurology, Rudolf Magnus Institute, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
61Center for Neurobehavioral Genetics, University of California, Los Angeles, USA
62Department of Medical Genetics and Rudolf Magnus Institute, University Medical Center Utrecht, Utrecht, The Netherlands
63Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
64Centre for Global Health, Medical School, University of Split, Split, Croatia
65Gen-info Ltd, Zagreb, Croatia
66Department of Neurology, General Central Hospital, Bolzano, Italy
67Department of Neurology, University of Lübeck, Lübeck, Germany
68Cardiology Division, Massachusetts General Hospital, Boston, USA.
69Division of Clinical Developmental Sciences, St. George’s University of London, London, UK
70Inspectorate of Health Care, The Hague, The Netherlands
71Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
72Leicester NIHR Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Desai, A.D. et al. Prognostic significance of quantitative QRS duration. Am. J. Med. 119, 600–606 (2006).

Elhendy, A., Hammill, S.C., Mahoney, D.W. & Pellikka, P.A. Relation of QRS duration on the surface 12-lead electrocardiogram with mortality in patients with known or suspected coronary artery disease. Am. J. Cardiol. 96, 1082–1088 (2005).

Oikarinen, L. et al. QRS duration and QT interval predict mortality in hypertensive patients with left ventricular hypertrophy: the Losartan Intervention for Endpoint Reduction in Hypertension Study. Hypertension 43, 1029–1034 (2004).

Dhingra, R. et al. Electrocardiographic QRS duration and the risk of congestive heart failure: the Framingham Heart Study. Hypertension 47, 861–867 (2006).

Busjahn, A. et al. QT interval is linked to 2 long-QT syndrome loci in normal subjects. Circulation 99, 3161–3164 (1999).

Hanson, B. et al. Genetic factors in the electrocardiogram and heart rate of twins reared apart and together. Am. J. Cardiol. 63, 606–609 (1989).

Bezzina, C.R. et al. Common sodium channel promoter haplotype in Asian subjects underlies variability in cardiac conduction. Circulation 113, 338–344 (2006).

Chambers, J.C. et al. Genetic variation in SCN10A influences cardiac conduction. Nat. Genet. 42, 149–152 (2010).

Holm, H. et al. Several common variants modulate heart rate, PR interval and QRS duration. Nat. Genet. 42, 117–122 (2010).

Dubois, P.C. et al. Multiple common variants for celiac disease influencing immune gene expression. Nat. Genet. 42, 295–302 (2010).

Newton-Cheh, C. et al. Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat. Genet. 41, 399–406 (2009).

Pfeufer, A. et al. Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat. Genet. 41, 407–414 (2009).

Pfeufer, A. et al. Genome-wide association study of PR interval. Nat. Genet. 42, 153–159 (2010).

Calvano, S.E. et al. A network-based analysis of systemic inflammation in humans. Nature 437, 1032–1037 (2005).

Huang, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

Zhang, B., Schmoyer, D., Kirov, S. & Snoddy, J. GOTree Machine (GOTM): a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies. BMC Bioinformatics 5, 16 (2004).

Pallante, B.A. et al. Contactin-2 expression in the cardiac Purkinje fiber network. Circ. Arrhythm. Electrophysiol. 3, 186–194 (2010).

Jarvis, M.F. et al. A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proc. Natl. Acad. Sci. USA 104, 8520–8525 (2007).

Desplantez, T., Dupont, E., Severs, N.J. & Weingart, R. Gap junction channels and cardiac impulse propagation. J. Membr. Biol. 218, 13–28 (2007).

Abriel, H. Cardiac sodium channel Na(v)1.5 and interacting proteins: physiology and pathophysiology. J. Mol. Cell. Cardiol. 48, 2–11 (2010).

Remme, C.A., Wilde, A.A. & Bezzina, C.R. Cardiac sodium channel overlap syndromes: different faces of SCN5A mutations. Trends Cardiovasc. Med. 18, 78–87 (2008).

Akopian, A.N. et al. The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat. Neurosci. 2, 541–548 (1999).

Saimi, Y. & Kung, C. Calmodulin as an ion channel subunit. Annu. Rev. Physiol. 64, 289–311 (2002).

Potet, F. et al. Functional interactions between distinct sodium channel cytoplasmic domains through the action of calmodulin. J. Biol. Chem. 284, 8846–8854 (2009).

Wolf, C.M. & Berul, C.I. Inherited conduction system abnormalities—one group of diseases, many genes. J. Cardiovasc. Electrophysiol. 17, 446–455 (2006).

Zhu, Y. et al. Tbx5-dependent pathway regulating diastolic function in congenital heart disease. Proc. Natl. Acad. Sci. USA 105, 5519–5524 (2008).

Lebrec, J.J., Stijnen, T. & van Houwelingen, H.C. Dealing with heterogeneity between cohorts in genomewide SNP association studies. Stat. Appl. Genet. Mol. Biol. 9 article 8 (2010).

Wei, L., Hanna, A.D., Beard, N.A. & Dulhunty, A.F. Unique isoform-specific properties of calsequestrin in the heart and skeletal muscle. Cell Calcium 45, 474–484 (2009).

Terentyev, D. et al. Abnormal interactions of calsequestrin with the ryanodine receptor calcium release channel complex linked to exercise-induced sudden cardiac death. Circ. Res. 98, 1151–1158 (2006).

Priori, S.G. et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation 106, 69–74 (2002).

Postma, A.V. et al. Absence of calsequestrin 2 causes severe forms of catecholaminergic polymorphic ventricular tachycardia. Circ. Res. 91, e21–e26 (2002).

Wang, Y. & Goldhaber, J.I. Return of calcium: manipulating intracellular calcium to prevent cardiac pathologies. Proc. Natl. Acad. Sci. USA 101, 5697–5698 (2004).

Vasan, R.S. et al. Genetic variants associated with cardiac structure and function: a meta-analysis and replication of genome-wide association data. J. Am. Med. Assoc. 302, 168–178 (2009).

Eijgelsheim, M. et al. Genome-wide association analysis identifies multiple loci related with resting heart rate. Hum. Mol. Genet. 19, 3885–3895 (2010).

Braz, J.C. et al. PKC-alpha regulates cardiac contractility and propensity toward heart failure. Nat. Med. 10, 248–254 (2004).

Baillat, G. et al. Molecular cloning and characterization of phocein, a protein found from the Golgi complex to dendritic spines. Mol. Biol. Cell 12, 663–673 (2001).

Meurs, K.M. et al. Genome-wide association identifies a deletion in the 3′ untranslated region of Striatin in a canine model of arrhythmogenic right ventricular cardiomyopathy. Hum. Genet. 128, 315–324. (2010).

Boogerd, K.J. et al. Msx1 and Msx2 are functional interacting partners of T-box factors in the regulation of Connexin43. Cardiovasc. Res. 78, 485–493 (2008).

Hoogaars, W.M. et al. The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc. Res. 62, 489–499 (2004).

Singh, R. et al. Tbx20 interacts with smads to confine tbx2 expression to the atrioventricular canal. Circ. Res. 105, 442–452 (2009).

Posch, M.G. et al. A gain-of-function TBX20 mutation causes congenital atrial septal defects, patent foramen ovale and cardiac valve defects. J. Med. Genet. 47, 230–235 (2009).

Bakker, M.L. et al. Transcription factor Tbx3 is required for the specification of the atrioventricular conduction system. Circ. Res. 102, 1340–1349 (2008).

Riley, P., Anson-Cartwright, L. & Cross, J.C. The Hand1 bHLH transcription factor is essential for placentation and cardiac morphogenesis. Nat. Genet. 18, 271–275 (1998).

Reamon-Buettner, S.M. et al. A functional genetic study identifies HAND1 mutations in septation defects of the human heart. Hum. Mol. Genet. 18, 3567–3578 (2009).

Breckenridge, R.A. et al. Overexpression of the transcription factor Hand1 causes predisposition towards arrhythmia in mice. J. Mol. Cell. Cardiol. 47, 133–141 (2009).

Rentschler, S. et al. Neuregulin-1 promotes formation of the murine cardiac conduction system. Proc. Natl. Acad. Sci. USA 99, 10464–10469 (2002).

Hofer, A. et al. C-erbB2/neu transfection induces gap junctional communication incompetence in glial cells. J. Neurosci. 16, 4311–4321 (1996).

Besson, A. & Yong, V.W. Involvement of p21(Waf1/Cip1) in protein kinase C alpha-induced cell cycle progression. Mol. Cell. Biol. 20, 4580–4590 (2000).

Wilkinson, L. et al. CRIM1 regulates the rate of processing and delivery of bone morphogenetic proteins to the cell surface. J. Biol. Chem. 278, 34181–34188 (2003).

Kolle, G., Georgas, K., Holmes, G.P., Little, M.H. & Yamada, T. CRIM1, a novel gene encoding a cysteine-rich repeat protein, is developmentally regulated and implicated in vertebrate CNS development and organogenesis. Mech. Dev. 90, 181–193 (2000).

Pardali, K., Kowanetz, M., Heldin, C.H. & Moustakas, A. Smad pathway-specific transcriptional regulation of the cell cycle inhibitor p21(WAF1/Cip1). J. Cell. Physiol. 204, 260–272 (2005).

Laederich, M.B. et al. The leucine-rich repeat protein LRIG1 is a negative regulator of ErbB family receptor tyrosine kinases. J. Biol. Chem. 279, 47050–47056 (2004).

Minakuchi, M. et al. Identification and characterization of SEB, a novel protein that binds to the acute undifferentiated leukemia-associated protein SET. Eur. J. Biochem. 268, 1340–1351 (2001).

Zhao, J. & Zhong, C.J. A review on research progress of transketolase. Neurosci. Bull. 25, 94–99 (2009).

Fedi, P. et al. Isolation and biochemical characterization of the human Dkk-1 homologue, a novel inhibitor of mammalian Wnt signaling. J. Biol. Chem. 274, 19465–19472 (1999).

Ai, Z., Fischer, A., Spray, D.C., Brown, A.M. & Fishman, G.I. Wnt-1 regulation of connexin43 in cardiac myocytes. J. Clin. Invest. 105, 161–171 (2000).

Korol, O., Gupta, R.W. & Mercola, M. A novel activity of the Dickkopf-1 amino terminal domain promotes axial and heart development independently of canonical Wnt inhibition. Dev. Biol. 324, 131–138 (2008).

Tsai, I.C. et al. A Wnt-CKIvarepsilon-Rap1 pathway regulates gastrulation by modulating SIPA1L1, a Rap GTPase activating protein. Dev. Cell 12, 335–347 (2007).

Chen, W.M. & Abecasis, G.R. Family-based association tests for genomewide association scans. Am. J. Hum. Genet. 81, 913–926 (2007).

Devlin, B., Roeder, K. & Wasserman, L. Genomic control, a new approach to genetic-based association studies. Theor. Popul. Biol. 60, 155–166 (2001).

de Bakker, P.I. et al. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum. Mol. Genet. 17, R122–R128 (2008).

Pe'er, I., Yelensky, R., Altshuler, D. & Daly, M.J. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet. Epidemiol. 32, 381–385 (2008).

Johnson, A.D. et al. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24, 2938–2939 (2008).

Sreejit, P., Kumar, S. & Verma, R.S. An improved protocol for primary culture of cardiomyocyte from neonatal mice. In Vitro Cell. Dev. Biol. Anim. 44, 45–50 (2008).

Livak, K.J. & Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408 (2001).

Lee, P. et al. Conditional lineage ablation to model human diseases. Proc. Natl. Acad. Sci. USA 95, 11371–11376 (1998).