P2X7 receptor: the regulator of glioma tumor development and survival

Purinergic Signalling - Tập 18 Số 1 - Trang 135-154 - 2022
Damian Matyśniak1, Natalia Nowak2, Artur Kukla3, Lilya Lehka4, Magdalena Oslislok5, Paweł Pomorski6
1Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland.
2Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
3Silesian University of Technology
4Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
5Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
6Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland. [email protected].

Tóm tắt

Abstract P2X7 is an ionotropic nucleotide receptor, forming the cation channel upon ATP stimulation. It can also function as a large membrane pore as well as transmit ATP-dependent signal without forming a channel at all. P2X7 activity in somatic cells is well-known, but remains poorly studied in glioma tumors. The current paper presents the comprehensive study of P2X7 activity in C6 and glioma cell line showing the wide range of effects the receptor has on glioma biology. We observed that P2X7 stimulation boosts glioma cell proliferation and increases cell viability. P2X7 activation promoted cell adhesion, mitochondria depolarization, and reactive oxygen species overproduction in C6 cells. P2X7 receptor also influenced glioma tumor growth in vivo via activation of pro-survival signaling pathways and ATP release. Treatment with Brilliant Blue G, a selective P2X7 antagonist, effectively inhibited glioma tumor development; decreased the expression of negative prognostic cancer markers pro-survival and epithelial-mesenchymal transition (EMT)-related proteins; and modulated the immune response toward glioma tumor in vivo. Finally, pathway-specific enrichment analysis of the microarray data from human patients also showed an upregulation of P2X7 receptor in gliomas from grades I to III. The presented results shed more light on the role of P2X7 receptor in the biology of this disease.

Từ khóa


Tài liệu tham khảo

di Virgilio F, Dal Ben D, Sarti AC et al (2017) The P2X7 receptor in infection and inflammation. Immunity 47:15–31. https://doi.org/10.1016/j.immuni.2017.06.020

Sluyter R, Stokes L (2011) Significance of p2x7 receptor variants to human health and disease. Recent Pat DNA Gene Seq 5:41–54. https://doi.org/10.2174/187221511794839219

Cheewatrakoolpong B, Gilchrest H, Anthes JC, Greenfeder S (2005) Identification and characterization of splice variants of the human P2X7 ATP channel. Biochem Biophys Res Commun 332:17–27. https://doi.org/10.1016/j.bbrc.2005.04.087

Roger S, Jelassi B, Couillin I et al (2015) Understanding the roles of the P2X7 receptor in solid tumour progression and therapeutic perspectives. Biochim Biophys Acta - Biomembr 1848:2584–2602. https://doi.org/10.1016/j.bbamem.2014.10.029

Adinolfi E, Pizzirani C, Idzko M et al (2005) P2X7 receptor: death or life? Purinergic Signal 1:219–227. https://doi.org/10.1007/s11302-005-6322-x

Surprenant A, Rassendren F, Kawashima E et al (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–738. https://doi.org/10.1126/science.272.5262.735

Adinolfi E, Callegari MG, Ferrari D et al (2005) Basal activation of the P2X7 ATP receptor elevates mitochondrial calcium and potential, increases cellular ATP levels, and promotes serum-independent growth. Mol Biol Cell 16:3260–3272. https://doi.org/10.1091/mbc.E04-11-1025

Adinolfi E, Giuliani AL, de Marchi E et al (2018) The P2X7 receptor: a main player in inflammation. Biochem Pharmacol 151:234–244. https://doi.org/10.1016/j.bcp.2017.12.021

di Virgilio F, Chiozzi P, Falzoni S et al (1998) Cytolytic P2X purinoceptors. Cell Death Differ 5:191–199. https://doi.org/10.1038/sj.cdd.4400341

Pfeiffer ZA, Aga M, Prabhu U et al (2004) The nucleotide receptor P2X7 mediates actin reorganization and membrane blebbing in RAW 264.7 macrophages via p38 MAP kinase and Rho. J Leukoc Biol 75:1173–1182. https://doi.org/10.1189/jlb.1203648

Csóka B, Németh ZH, Töro G et al (2015) Extracellular ATP protects against sepsis through macrophage P2X7 purinergic receptors by enhancing intracellular bacterial killing. FASEB J 29:3626–3637. https://doi.org/10.1096/fj.15-272450

Eyo UB, Miner SA, Ahlers KE et al (2013) P2X7 receptor activation regulates microglial cell death during oxygen-glucose deprivation. NeuroPharmacol 73:311–319. https://doi.org/10.1016/j.neuropharm.2013.05.032

Nadal-Nicolás FM, Galindo-Romero C, Valiente-Soriano FJ et al (2016) Involvement of P2X7 receptor in neuronal degeneration triggered by traumatic injury. Sci Rep 6. https://doi.org/10.1038/srep38499

Draganov D, Gopalakrishna-Pillai S, Chen YR et al (2015) Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci Rep 5. https://doi.org/10.1038/srep16222

Salvestrini V, Orecchioni S, Talarico G, et al (2017) Extracellular ATP induces apoptosis through P2X7R activation in acute myeloid leukemia cells but not in normal hematopoietic stem cells. Oncotarget 8:5895–5908. https://doi.org/10.18632/oncotarget.13927

Giannuzzo A, Pedersen SF, Novak I (2015) The P2X7 receptor regulates cell survival, migration and invasion of pancreatic ductal adenocarcinoma cells. Mol Cancer 14. https://doi.org/10.1186/s12943-015-0472-4

Park JH, Williams DR, Lee JH et al (2016) Potent suppressive effects of 1-piperidinylimidazole based novel p2×7 receptor antagonists on cancer cell migration and invasion. J Med Chem 59:7410–7430. https://doi.org/10.1021/acs.jmedchem.5b01690

Burnstock G (2017) Purinergic signalling: therapeutic developments. In: Frontiers in Pharmacology. 8:661. https://doi.org/10.3389/fphar.2017.00661

D’Alimonte I, Nargi E, Zuccarini M et al (2015) Potentiation of temozolomide antitumor effect by purine receptor ligands able to restrain the in vitro growth of human glioblastoma stem cells. Purinergic Signal 11:331–346. https://doi.org/10.1007/s11302-015-9454-7

Gendron FP, Neary JT, Theiss PM et al (2003) Mechanisms of P2X7 receptor-mediated ERK1/2 phosphorylation in human astrocytoma cells. Am J Phys Cell Physiol 284. https://doi.org/10.1152/ajpcell.00286.2002

Raffaghello L, Chiozzi P, Falzoni S et al (2006) The P2X7 receptor sustains the growth of human neuroblastoma cells through a substance P-dependent mechanism. Can Res 66:907–914. https://doi.org/10.1158/0008-5472.CAN-05-3185

Strong AD, Indart MC, Hill NR, Daniels RL (2018) GL261 glioma tumor cells respond to ATP with an intracellular calcium rise and glutamate release. Mol Cell Biochem 446:53–62. https://doi.org/10.1007/s11010-018-3272-5

Ryu JK, Jantaratnotai N, Serrano-Perez MC et al (2011) Block of purinergic P2X7R inhibits tumor growth in a c6 glioma brain tumor animal model. J Neuropathol Exp Neurol 70:13–22. https://doi.org/10.1097/NEN.0b013e318201d4d4

Johnsen B, Kaschubowski KE, Nader S et al (2019) P2X7-mediated ATP secretion is accompanied by depletion of cytosolic ATP. Purinergic Signal 15:155–166. https://doi.org/10.1007/s11302-019-09654-5

Morrone FB, Oliveira DL, Gamermann P et al (2006) In vivo glioblastoma growth is reduced by apyrase activity in a rat glioma model. BMC Cancer 6. https://doi.org/10.1186/1471-2407-6-226

Morrone FB, Gehring MP, Nicoletti NF (2016) Calcium channels and associated receptors in malignant brain tumor therapy. Mol Pharmacol 90:403–409. https://doi.org/10.1124/mol.116.103770

Gonzaga DT, Oliveira FH, Salles JP et al (2019) Synthesis, biological evaluation and molecular modeling studies of new thiadiazole derivatives as potent P2X7 receptor inhibitors. Front Chem 7. https://doi.org/10.3389/fchem.2019.00261

Xiao Y, Karra S, Goutopoulos A et al (2019) Synthesis and SAR development of quinoline analogs as novel P2X7 receptor antagonists. Bioorg Med Chem Lett 29:1660–1664. https://doi.org/10.1016/j.bmcl.2019.04.033

Dayel AB, Evans RJ, Schmid R (2019) Mapping the site of action of human P2X7 receptor antagonists AZ11645373, Brilliant Blue G, KN-62, calmidazolium, and Zinc58368839 to the intersubunit allosteric pocket. Mol Pharmacol 96:355–363. https://doi.org/10.1124/mol.119.116715

Kwak SH, Shin S, Lee JH et al (2018) Synthesis and structure-activity relationships of quinolinone and quinoline-based P2X7 receptor antagonists and their anti-sphere formation activities in glioblastoma cells. Eur J Med Chem 151:462–481. https://doi.org/10.1016/j.ejmech.2018.03.023

Onopiuk M, Wierzbicka K, Brutkowski W et al (2010) Caspase-dependent inhibition of store-operated Ca2+ entry into apoptosis-committed Jurkat cells. Biochem Biophys Res Commun 399:198–202. https://doi.org/10.1016/j.bbrc.2010.07.054

Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(672):82. https://doi.org/10.1038/nmeth.2019

Rueden CT, Schindelin J, Hiner MC et al (2017) Image J2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18. https://doi.org/10.1186/s12859-017-1934-z

Kaye AH, Morstyn G, Gardner I, Pyke K (1986) Development of a xenograft glioma model in mouse brain. Can Res 46:1367–1373

Donnelly-Roberts DL, Namovic MT, Han P, Jarvis MF (2009) Mammalian P2X7 receptor pharmacology: comparison of recombinant mouse, rat and human P2X7 receptors. Br J Pharmacol 157:1203–1214. https://doi.org/10.1111/j.1476-5381.2009.00233.x

Geraghty NJ, Belfiore L, Ly D et al (2017) The P2X7 receptor antagonist Brilliant Blue G reduces serum human interferon-γ in a humanized mouse model of graft-versus-host disease. Clin Exp Immunol 190:79–95. https://doi.org/10.1111/cei.13005

Vázquez-Cuevas FG, Martínez-Ramírez AS, Robles-Martínez L et al (2014) Paracrine stimulation of P2X7 Receptor by ATP activates a proliferative pathway in ovarian carcinoma cells. J Cell Biochem 115:1955–1966. https://doi.org/10.1002/jcb.24867

Baricordi OR, Melchiorri L, Adinolfi E et al (1999) Increased proliferation rate of lymphoid cells transfected with the P2X7 ATP receptor. J Biol Chem 274:33206–33208. https://doi.org/10.1074/jbc.274.47.33206

Amoroso F, Capece M, Rotondo A et al (2015) The P2X7 receptor is a key modulator of the PI3K/GSK3β/VEGF signaling network: evidence in experimental neuroblastoma. Oncogene 34:5240–5251. https://doi.org/10.1038/onc.2014.444

Karbownik MS, Pietras T, Szemraj J et al (2014) The ability of hyaluronan fragments to reverse the resistance of C6 rat glioma cell line to temozolomide and carmustine. Wspolczesna Onkol 18. https://doi.org/10.5114/wo.2014.43493

Schneider E, Rissiek A, Winzer R et al (2019) Generation and function of non-cell-bound CD73 in inflammation. Front Immunol 10:1729

Matyśniak D, Nowak N, Chumak V, Pomorski P (2020) P2X7 receptor activity landscape in rat and human glioma cell lines. Acta Biochim Pol 67:7–14. https://doi.org/10.18388/ABP.2020_2848

Liu Z, Yao Z (2010) Expression data from different grades (WHO) of astrocytomas (ACM). In: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19728&fbclid=IwAR251_GjISIUTUnnxP7WnlRN21e7WM_OqgG0Y3FYolHU6qxsmkpmG WHvVL4

Liu Z, Yao Z, Li C et al (2011) Gene expression profiling in human high-grade astrocytomas. Comp Funct Genomics 2011. https://doi.org/10.1155/2011/245137

Zhang X, Chen Y, Wang C, Huang LYM (2007) Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia. Proc Natl Acad Sci USA 104. https://doi.org/10.1073/pnas.0611048104

McLarnon JG (2017) Roles of purinergic P2X7 receptor in glioma and microglia in brain tumors. Cancer Lett 402:93–99. https://doi.org/10.1016/j.canlet.2017.05.004

Martins I, Tesniere A, Kepp O et al (2009) Chemotherapy induces ATP release from tumor cells. Cell Cycle 8:3723–3728. https://doi.org/10.4161/cc.8.22.10026

Gehring MP, Pereira TCB, Zanin RF et al (2012) P2X7 receptor activation leads to increased cell death in a radiosensitive human glioma cell line. Purinergic Signal 8:729–739. https://doi.org/10.1007/s11302-012-9319-2

Tamajusuku ASK, Villodre ES, Paulus R et al (2010) Characterization of ATP-induced cell death in the GL261 mouse glioma. J Cell Biochem 109:983–991. https://doi.org/10.1002/jcb.22478

Wei W, Ryu JK, Choi HB, McLarnon JG (2008) Expression and function of the P2X7 receptor in rat C6 glioma cells. Cancer Lett 260:79–87. https://doi.org/10.1016/j.canlet.2007.10.025

Trachootham D, Zhou Y, Zhang H et al (2006) Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate. Cancer Cell 10:241–252. https://doi.org/10.1016/j.ccr.2006.08.009

Parascandolo A, Laukkanen MO (2019) Carcinogenesis and reactive oxygen species signaling: interaction of the NADPH oxidase NOX1-5 and superoxide dismutase 1–3 signal transduction pathways. Antioxid Redox Signal 30:443–486. https://doi.org/10.1089/ars.2017.7268

Xu S, Xu H, Wang W et al (2019) The role of collagen in cancer: from bench to bedside. J Transl Med 17. https://doi.org/10.1186/s12967-019-2058-1

Ellert-Miklaszewska A, Poleszak K, Pasierbinska M, Kaminska B (2020) Integrin signaling in glioma pathogenesis: from biology to therapy. Int J Mol Sci 21:888. https://doi.org/10.3390/ijms21030888

Biber K, Bhattacharya A, Campbell BM et al (2019) Microglial drug targets in AD: opportunities and challenges in drug discovery and development. Front Pharmacol 10. https://doi.org/10.3389/fphar.2019.00840

Fang KM, Wang YL, Huang MC et al (2011) Expression of macrophage inflammatory protein-1α and monocyte chemoattractant protein-1 in glioma-infiltrating microglia: involvement of ATP and P2X7 receptor. J Neurosci Res 89. https://doi.org/10.1002/jnr.22538

Fang J, Chen X, Zhang L et al (2013) P2X7R suppression promotes glioma growth through epidermal growth factor receptor signal pathway. Int J Biochem Cell Biol 45. https://doi.org/10.1016/j.biocel.2013.03.005

Rathore S, Niazi T, Iftikhar MA, Chaddad A (2020) Glioma grading via analysis of digital pathology images using machine learning. Cancers 12. https://doi.org/10.3390/cancers12030578

Rong Y, Durden DL, van Meir EG, Brat DJ (2006) “Pseudopalisading” necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol 65:529–539. https://doi.org/10.1097/00005072-200606000-00001

Suzuki Y, Shirai K, Oka K et al (2010) Higher pAkt expression predicts a significant worse prognosis in glioblastomas. J Radiat Res 51:343–348. https://doi.org/10.1269/jrr.09109

Schultz CR, Golembieski WA, King DA et al (2012) Inhibition of HSP27 alone or in combination with pAKT inhibition as therapeutic approaches to target SPARC-induced glioma cell survival. Mol Cancer 11. https://doi.org/10.1186/1476-4598-11-20

Graner MW, Raynes DA, Bigner DD, Guerriero V (2009) Heat shock protein 70-binding protein 1 is highly expressed in high-grade gliomas, interacts with multiple heat shock protein 70 family members, and specifically binds brain tumor cell surfaces. Cancer Sci 100:1870–1879. https://doi.org/10.1111/j.1349-7006.2009.01269.x

Koga F, Kihara K, Neckers L (2009) Inhibition of cancer invasion and metastasis by targeting the molecular chaperone heat-shock protein 90. Anticancer Res 29:797–808

Roomi MW, Kalinovsky T, Rath M, Niedzwiecki A (2017) Modulation of MMP-2 and MMP-9 secretion by cytokines, inducers and inhibitors in human glioblastoma T-98G cells. Oncol Rep 37:1907–1913. https://doi.org/10.3892/or.2017.5391

Ulrich H, Ratajczak MZ, Schneider G et al (2018) Kinin and purine signaling contributes to neuroblastoma metastasis. Front Pharmacol 9. https://doi.org/10.3389/fphar.2018.00500

Schwartzbaum JA, Huang K, Lawler S et al (2010) Allergy and inflammatory transcriptome is predominantly negatively correlated with CD133 expression in glioblastoma. Neuro Oncol 12:320–327. https://doi.org/10.1093/neuonc/nop035

Guerra-Rebollo M, Garrido C, Sánchez-Cid L et al (2019) Targeting of replicating CD133 and OCT4/SOX2 expressing glioma stem cells selects a cell population that reinitiates tumors upon release of therapeutic pressure. Sci Rep 9. https://doi.org/10.1038/s41598-019-46014-0

Ziberi S, Zuccarini M, Carluccio M et al (2019) Upregulation of epithelial-to-mesenchymal transition markers and P2X7 receptors is associated to increased invasiveness caused by P2X7 receptor stimulation in human glioblastoma stem cells. Cells 9:85. https://doi.org/10.3390/cells9010085

Matias D, Balça-Silva J, Dubois LG et al (2017) Dual treatment with shikonin and temozolomide reduces glioblastoma tumor growth, migration and glial-to-mesenchymal transition. Cell Oncol 40:247–261. https://doi.org/10.1007/s13402-017-0320-1

Nowicki MO, Hayes JL, Chiocca EA, Lawler SE (2019) Proteomic analysis implicates vimentin in glioblastoma cell migration. Cancers 11. https://doi.org/10.3390/cancers11040466

Amores-Iniesta J, Barberà-Cremades M, Martínez CM et al (2017) Extracellular ATP activates the NLRP3 inflammasome and is an early danger signal of skin allograft rejection. Cell Rep 21:3414–3426. https://doi.org/10.1016/j.celrep.2017.11.079

Idzko M, Ferrari D, Eltzschig HK (2014) Nucleotide signalling during inflammation. Nature 509:310–317. https://doi.org/10.1038/nature13085

Bae JY, Lee SW, Shin YH, et al (2017) P2X7 receptor and NLRP3 inflammasome activation in head and neck cancer. Oncotarget 8:48972–48982. https://doi.org/10.18632/oncotarget.16903

Gdynia G, Grund K, Eckert A et al (2007) Basal caspase activity promotes migration and invasiveness in glioblastoma cells. Mol Cancer Res 5:1232–1240. https://doi.org/10.1158/1541-7786.MCR-07-0343

Walczak M, Martens S (2013) Dissecting the role of the Atg12-Atg5-Atg16 complex during autophagosome formation. Autophagy 9:424–425. https://doi.org/10.4161/auto.22931

Tanida I, Ueno T, Kominami E (2004) LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 36:2503–2518. https://doi.org/10.1016/j.biocel.2004.05.009

Markovic DS, Glass R, Synowitz M et al (2005) Microglia stimulate the invasiveness of glioma cells by increasing the activity of metalloprotease-2. J Neuropathol Exp Neurol 64:754–762. https://doi.org/10.1097/01.jnen.0000178445.33972.a9

Chia K, Keatinge M, Mazzolini J, Sieger D (2019) Brain tumours repurpose endogenous neuron to microglia signalling mechanisms to promote their own proliferation. eLife 8:. https://doi.org/10.7554/eLife.46912

Hambardzumyan D, Gutmann DH, Kettenmann H (2015) The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 19:20–27. https://doi.org/10.1038/nn.4185

Wang L, Zhang C, Zhang Z et al (2018) Specific clinical and immune features of CD68 in glioma via 1,024 samples. Cancer Management and Research 10:6409–6419. https://doi.org/10.2147/CMAR.S183293

Drill M, Powell KL, Kan LK et al (2020) Inhibition of purinergic P2X receptor 7 (P2X7R) decreases granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in U251 glioblastoma cells. Sci Rep 10. https://doi.org/10.1038/s41598-020-71887-x

Kan LK, Seneviratne S, Drummond KJ et al (2020) P2X7 receptor antagonism inhibits tumour growth in human high-grade gliomas. Purinergic Signalling 16. https://doi.org/10.1007/s11302-020-09705-2

Bergamin LS, Capece M, Salaro E, et al (2019) Role of the P2X7 receptor in in vitro and in vivo glioma tumor growth. Oncotarget 10:. https://doi.org/10.18632/oncotarget.27106

Gehring MP, Kipper F, Nicoletti NF et al (2015) P2X7 receptor as predictor gene for glioma radiosensitivity and median survival. Int J Biochem Cell Biol 68. https://doi.org/10.1016/j.biocel.2015.09.001

Ji Z, Xie Y, Guan Y et al (2018) Involvement of P2X7 receptor in proliferation and migration of human glioma cells. Biomed Res Int 2018. https://doi.org/10.1155/2018/8591397

Liu J, Li N, Sheng R et al (2017) Hypermethylation downregulates P2X7 receptor expression in astrocytoma. Oncol Lett 14. https://doi.org/10.3892/ol.2017.7241