Low temperature hydrothermal synthesis of Ba(Mg1/3Ta2/3)O3 sol-derived powders

Journal of Materials Science - Tập 33 - Trang 17-22 - 1998
I Maclaren1, C. B Ponton1
1IRC in Materials for High Performance Applications and School of Metallurgy and Materials, The University of Birmingham, Birmingham, UK

Tóm tắt

Powders of the microwave dielectric material barium magnesium tantalate Ba(Mg1/3Ta2/3)O3 have been produced by hydrothermal synthesis at moderately low temperatures (160 to 350°C). It was found that while it is relatively straightforward to produce the material in the desired perovskite phase at or below 200°C, the powder particles tend to be highly irregular in morphology with extremely small dimensions (of the order of 10 nm) and deficient in magnesium (with some precipitation of the excess magnesium as the hydroxide). The effects of both higher synthesis temperatures and different feedstock preparation were thus investigated with the aim of improving the precipitation of magnesium under hydrothermal conditions in order to produce a more homogeneous, stoichiometric powder and significant progress was made. It was found that when near-stoichiometric particles are formed, they adopt rounded morphologies and exhibit larger particle sizes (around 30–50 nm). These results show that the hydrothermal feedstock and the synthesis temperature used have a profound effect on particle stoichiometry, which in turn affects the growth morphology of the particles.

Tài liệu tham khảo

S. Kawashima, M. Nishida, I. Ueda, H. Ouchi and S. Hayakawa, in Proceedings of the First Meeting on Ferroelectric Materials and their Applications, (Keihin Printing Co. Ltd., Kyoto, Japan, 1977) p. 293. K. Matsumoto, T. Hiuga, K. Takada and H. Ichimura, IEEE Trans. UFFC 33 (1986) 802. H. Matsumoto, H. Tamura and K. Wakino, Jpn J. Appl. Phys. 30 (1991) 2347. X. M. Chen, Y. Suzuki, N. Sato, J. Mater. Sci.-Mater. Electronics 5 (1994) 244. M. Furuya and A. Ochi, Jpn J. Appl. Phys. 33 (1994) 5482. O. Renoult, J. P. Boilot, F. Chaput, R. Papiernik, L. G. Hubert-Pfalzgraf and M. Lejeune, J. Amer. Ceram. Soc. 75 (1992) 3337. S. Katayama, I. Yoshinaga, N. Yamada and T. Nagai, ibid. 79 (1996) 2059. D. Ravichandran, R. Meyer, R. Roy, R. Guo, A. S. Bhalla and L. E. Cross, Mater. Res. Bull. 31 (1996) 817. R. Vivekanandan, S. Philip and T. R. N. Kutty, ibid. 22 (1986) 99. A. Ataie, M. R. Piramoon, I. R. Harris and C. B. Ponton, J. Mater. Sci. 30 (1995) 5600. F. Galasso and J. Pyle, Inorg. Chem. 2 (1963) 482. A. J. Jacobsen, B. M. Collins and B. E. F. Fender, Acta Crystallogr B32 (1976) 1083. K. Itatani, K. Koizumi, F. S. Howell, A. Kishioka and M. Kinoshita, J. Mater. Sci. 23 (1988) 3405. Idem., ibid. 24 (1989) 2603. I. Maclaren, C. B. Ponton, C. N. Elgy and P. R. Knott, LINK Nanotechnology Project 38: Preparation and Characterisation of Ultra-Fine Electroceramic Powders, Internal Progress Report, 1997. Idem., in Proceedings of Electroceramics V, edited by J. L. Baptista, J. A. Labrincha and P. M. Vilarinho, (European Ceramic Society, 1996) 2, 375.