Geopolymers and other alkali activated materials: why, how, and what?

Matériaux et constructions - Tập 47 - Trang 11-25 - 2013
John L. Provis1
1Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK

Tóm tắt

This paper presents a review of alkali-activation technology, moving from the atomic scale and chemical reaction path modelling, towards macroscopic observables such as strength and durability of alkali-activated concretes. These properties and length scales are intrinsically interlinked, and so the chemistry of both low-calcium (‘geopolymer’) and high-calcium (blast furnace slag-derived) alkali-activated binders can be used as a starting point from which certain engineering properties may be discussed and explained. These types of materials differ in chemistry, binder properties, chemical structure and microstructure, and this leads to the specific material properties of each type of binder. The secondary binder products formed during alkali-activation (zeolites in low-Ca systems, mostly layered double hydroxides in alkali-activated slags) are of significant importance in determining the final properties of the materials, particularly in the context of durability. The production of highly durable concretes must remain the fundamental aim of research and development in the area of alkali-activation. However, to enable the term ‘highly durable’ to be defined in a satisfactory way, the underlying mechanisms of degradation—which are not always the same for alkali-activated binders as for Portland cement-based binders, and cannot always be tested in precisely the same ways—need to be further analysed and understood. The process of reviewing a topic such as this will inevitably raise just as many questions as answers, and it is the intention of this paper to present both, in appropriate context.

Tài liệu tham khảo

Provis JL, van Deventer JSJ, eds (2013) Alkali-activated materials: State-of-the-Art Report, RILEM TC 224-AAM. Springer/RILEM, Berlin Duxson P, Provis JL (2008) Designing precursors for geopolymer cements. J Am Ceram Soc 91(12):3864–3869 Provis JL (2009) Activating solution chemistry for geopolymers. In: Provis JL, van Deventer JSJ (eds) Geopolymers: structure, processing, properties and industrial applications. Woodhead, Cambridge, pp 50–71 Davidovits J (2008) Geopolymer chemistry and applications. Institut Géopolymère, Saint-Quentin Kühl H (1908) Slag cement and process of making the same. US Patent 900,939 Purdon AO (1940) The action of alkalis on blast-furnace slag. J Soc Chem Ind 59:191–202 Vanooteghem M (2011) Duurzaamheid van beton met alkali-geactiveerde slak uit de jaren 50—Het Purdocement. M.Ing. Thesis, Universiteit Gent Glukhovsky VD (1959) Gruntosilikaty (soil silicates). Gosstroyizdat, Kiev Krivenko PV (2002) Alkaline cements: from research to application. In: Lukey GC (ed) Geopolymers 2002: turn potential into profit, CD-ROM proceedings, Siloxo Pty. Ltd., Melbourne, Australia Husbands TB, Malone PG, Wakeley LD (1994) Performance of concretes proportioned with Pyrament blended cement, U.S. Army Corps of Engineers Construction Productivity Advancement Research Program, Report CPAR-SL-94-2, Vicksburg, MS Shi C, Krivenko PV, Roy DM (2006) Alkali-activated cements and concretes. Taylor & Francis, Abingdon van Deventer JSJ, Provis JL, Duxson P (2012) Technical and commercial progress in the adoption of geopolymer cement. Miner Eng 29:89–104 Habert G, Roussel N (2011) A method for a fair allocation of the environmental impacts of supplementary cementitious materials. In: Palomo A (ed) XIII international congress on the chemistry of cement, CD-ROM, Madrid, Spain von Weizsäcker E, Hargroves K, Smith MH, Desha C, Stasinopoulos P (2009) Factor five: transforming the global economy through 80% improvements in resource productivity. Earthscan, London McGuire EM, Provis JL, Duxson P, Crawford R (2011) Geopolymer concrete: is there an alternative and viable technology in the concrete sector which reduces carbon emissions? In: Concrete 2011, CD-ROM proceedings, Concrete Institute of Australia, Perth, Australia McLellan BC, Williams RP, Lay J, van Riessen A, Corder GD (2011) Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. J Clean Prod 19(9–10):1080–1090 Habert G, d’Espinose de Lacaillerie JB, Roussel N (2011) An environmental evaluation of geopolymer based concrete production: reviewing current research trends. J Clean Prod 19(11):1229–1238 Duxson P, Provis JL, Lukey GC, van Deventer JSJ (2007) The role of inorganic polymer technology in the development of ‘Green concrete’. Cem Concr Res 37(12):1590–1597 Duxson P, Provis JL, Lukey GC, Separovic F, van Deventer JSJ (2005) 29Si NMR study of structural ordering in aluminosilicate geopolymer gels. Langmuir 21(7):3028–3036 Shi C (2003) Corrosion resistance of alkali-activated slag cement. Adv Cem Res 15(2):77–81 Shi C, Stegemann JA (2000) Acid corrosion resistance of different cementing materials. Cem Concr Res 30(5):803–808 Bernal SA, Rodríguez ED, Mejía de Gutierrez R, Gordillo M, Provis JL (2011) Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. J Mater Sci 46(16):5477–5486 Hooton RD (2008) Bridging the gap between research and standards. Cem Concr Res 38(2):247–258 Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42(9):2917–2933 Provis JL, van Deventer JSJ (2007) Geopolymerisation kinetics 2. Reaction kinetic modelling. Chem Eng Sci 62(9):2318–2329 Provis JL, van Deventer JSJ (2007) Geopolymerisation kinetics: 1. In situ energy dispersive X-ray diffractometry. Chem Eng Sci 62(9):2309–2317 Provis JL, Walls PA, van Deventer JSJ (2008) Geopolymerisation kinetics. 3. Effects of Cs and Sr salts. Chem Eng Sci 63(18):4480–4489 Faimon J (1996) Oscillatory silicon and aluminum aqueous concentrations during experimental aluminosilicate weathering. Geochim Cosmochim Acta 60(15):2901–2907 Provis JL, Duxson P, Lukey GC, Separovic F, Kriven WM, van Deventer JSJ (2005) Modeling speciation in highly concentrated alkaline silicate solutions. Ind Eng Chem Res 44(23):8899–8908 Knight CTG, Balec RJ, Kinrade SD (2007) The structure of silicate anions in aqueous alkaline solutions. Angew Chem Int Ed 46:8148–8152 Lothenbach B, Gruskovnjak A (2007) Hydration of alkali-activated slag: thermodynamic modelling. Adv Cem Res 19(2):81–92 Chen W, Brouwers H (2007) The hydration of slag, part 1: reaction models for alkali-activated slag. J Mater Sci 42(2):428–443 Richardson IG (2004) Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C–S–H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cem Concr Res 34(9):1733–1777 Myers RJ, Bernal SA, San Nicolas R, Provis JL (2013) Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the crosslinked substituted tobermorite model. Langmuir 29(17):5294–5306 White CE, Provis JL, Kearley GJ, Riley DP, van Deventer JSJ (2011) Density functional modelling of silicate and aluminosilicate dimerisation solution chemistry. Dalton Trans 40(6):1348–1355 White CE, Provis JL, Proffen T, van Deventer JSJ (2011) Quantitative mechanistic modeling of silica solubility and precipitation during the initial period of zeolite synthesis. J Phys Chem C 115(20):9879–9888 White CE, Provis JL, Proffen T, van Deventer JSJ (2012) Molecular mechanisms responsible for the structural changes occurring during geopolymerization: multiscale simulation. AIChE J 58(7):2241–2253 Zhang Z, Wang H, Provis JL, Bullen F, Reid A, Zhu Y (2012) Quantitative kinetic and structural analysis of geopolymers: part 1. The activation of metakaolin with sodium hydroxide. Thermochim Acta 539:23–33 Zhang Z, Provis JL, Wang H, Bullen F, Reid A (2013) Quantitative kinetic and structural analysis of geopolymers: part 2. Thermodynamics of sodium silicate activation of metakaolin. Thermochim Acta 565:163–171 Alonso S, Palomo A (2001) Calorimetric study of alkaline activation of calcium hydroxide-metakaolin solid mixtures. Cem Concr Res 31(1):25–30 Granizo ML, Blanco MT (1998) Alkaline activation of metakaolin—an isothermal conduction calorimetry study. J Therm Anal 52(3):957–965 Puligilla S, Mondal P (2013) Role of slag in microstructural development and hardening of fly ash-slag geopolymer. Cem Concr Res 43:70–80 Shi C, Day RL (1995) A calorimetric study of early hydration of alkali-slag cements. Cem Concr Res 25(6):1333–1346 Bernal SA, Provis JL, Mejía de Gutierrez R, Rose V (2011) Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem Concr Compos 33(1):46–54 Provis JL, Rees CA (2009) Geopolymer synthesis kinetics. In: Provis JL, van Deventer JSJ (eds) Geopolymers: structure, processing, properties and industrial applications. Woodhead, Cambridge, pp 118–136 Provis JL, van Deventer JSJ (2007) Direct measurement of the kinetics of geopolymerisation by in situ energy dispersive X-ray diffractometry. J Mater Sci 42(9):2974–2981 White CE, Page K, Henson NJ, Provis JL (2013) In situ synchrotron X-ray pair distribution function analysis of the early stages of gel formation in metakaolin-based geopolymers. Appl Clay Sci 73:17–25 White CE, Provis JL, Bloomer B, Henson NJ, Page K (2013) In situ X-ray pair distribution function analysis of geopolymer gel nanostructure formation kinetics. Phys Chem Chem Phys 15(22):8573–8582 Steins P, Poulesquen A, Diat O, Frizon F (2012) Structural evolution during geopolymerization from an early age to consolidated material. Langmuir 28(22):8502–8510 White CE, Provis JL, Llobet A, Proffen T, van Deventer JSJ (2011) Evolution of local structure in geopolymer gels: an in situ neutron pair distribution function analysis. J Am Ceram Soc 94(10):3532–3539 Rees CA, Provis JL, Lukey GC, van Deventer JSJ (2007) In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation. Langmuir 23(17):9076–9082 Rees CA, Provis JL, Lukey GC, van Deventer JSJ (2008) The mechanism of geopolymer gel formation investigated through seeded nucleation. Colloids Surf A 318(1–3):97–105 Hajimohammadi A, Provis JL, van Deventer JSJ (2011) Time-resolved and spatially-resolved infrared spectroscopic observation of seeded nucleation controlling geopolymer gel formation. J Colloid Interface Sci 357(2):384–392 Hajimohammadi A, Provis JL, van Deventer JSJ (2010) The effect of alumina release rate on the mechanism of geopolymer gel formation. Chem Mater 22(18):5199–5208 Hajimohammadi A, Provis JL, van Deventer JSJ (2011) The effect of silica availability on the mechanism of geopolymerisation. Cem Concr Res 41(3):210–216 Provis JL, Lukey GC, van Deventer JSJ (2005) Do geopolymers actually contain nanocrystalline zeolites?—a reexamination of existing results. Chem Mater 17(12):3075–3085 Provis JL, Duxson P, Lukey GC, van Deventer JSJ (2005) Statistical thermodynamic model for Si/Al ordering in amorphous aluminosilicates. Chem Mater 17(11):2976–2986 Loewenstein W (1954) The distribution of aluminum in the tetrahedra of silicates and aluminates. Am Miner 39(1–2):92–96 Davidovits J (1991) Geopolymers—inorganic polymeric new materials. J Therm Anal 37(8):1633–1656 Rowles MR, Hanna JV, Pike KJ, Smith ME, O’Connor BH (2007) 29Si, 27Al, 1H and 23Na MAS NMR study of the bonding character in aluminosilicate inorganic polymers. Appl Magn Reson 32:663–689 Barbosa VFF, MacKenzie KJD, Thaumaturgo C (2000) Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. Int J Inorg Mater 2(4):309–317 Bernal SA, Provis JL, Walkley B, San Nicolas R, Gehman JD, Brice DG, Kilcullen A, Duxson P, van Deventer JSJ (2013) Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem Concr Res 53:127–144 Ruiz-Santaquiteria C, Skibsted J, Fernández-Jiménez A, Palomo A (2012) Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates. Cem Concr Res 42(9):1242–1251 Egami T (1990) Atomic correlations in non-periodic matter. Mater Trans JIM 31(3):163–176 Meral C, Benmore CJ, Monteiro PJM (2011) The study of disorder and nanocrystallinity in C–S–H, supplementary cementitious materials and geopolymers using pair distribution function analysis. Cem Concr Res 41(7):696–710 White CE (2012) Pair distribution function analysis of amorphous geopolymer precursors and binders: the importance of complementary molecular simulation. Z Krist 227:304–312 Bell JL, Sarin P, Provis JL, Haggerty RP, Driemeyer PE, Chupas PJ, van Deventer JSJ, Kriven WM (2008) Atomic structure of a cesium aluminosilicate geopolymer: a pair distribution function study. Chem Mater 20(14):4768–4776 White CE, Provis JL, Proffen T, van Deventer JSJ (2010) The effects of temperature on the local structure of metakaolin-based geopolymer binder: a neutron pair distribution function investigation. J Am Ceram Soc 93(10):3486–3492 Bell JL, Sarin P, Driemeyer PE, Haggerty RP, Chupas PJ, Kriven WM (2008) X-ray pair distribution function analysis of a metakaolin-based, KAlSi2O6·5.5H2O inorganic polymer (geopolymer). J Mater Chem 18:5974–5981 Duxson P, Lukey GC, van Deventer JSJ (2006) Evolution of gel structure during thermal processing of Na-geopolymer gels. Langmuir 22(21):8750–8757 Skinner LB, Chae SR, Benmore CJ, Wenk HR, Monteiro PJM (2010) Nanostructure of calcium silicate hydrates in cements. Phys Rev Lett 104:195502 Soyer-Uzun S, Chae SR, Benmore CJ, Wenk H-R, Monteiro PJM (2012) Compositional evolution of calcium silicate hydrate (C–S–H) structures by total X-ray scattering. J Am Ceram Soc 95(2):793–798 White CE, Provis JL, Proffen T, Riley DP, van Deventer JSJ (2010) Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin. Phys Chem Chem Phys 12(13):3239–3245 White CE, Provis JL, Proffen T, Riley DP, van Deventer JSJ (2010) Density functional modeling of the local structure of kaolinite subjected to thermal dehydroxylation. J Phys Chem A 114(14):4988–4996 White CE, Provis JL, Gordon LE, Riley DP, Proffen T, van Deventer JSJ (2011) The effect of temperature on the local structure of kaolinite intercalated with potassium acetate. J Am Ceram Soc 23(2):188–199 Reiss CA, Kharchenko A, Gateshki M (2012) On the use of laboratory X-ray diffraction equipment for pair distribution function (PDF) studies. Z Kristall 227(5):257–261 Aly Z, Vance ER, Perera DS, Hanna JV, Griffith CS, Davis J, Durce D (2008) Aqueous leachability of metakaolin-based geopolymers with molar ratios of Si/Al = 1.5–4. J Nucl Mater 378(2):172–179 Duxson P, Lukey GC, Separovic F, van Deventer JSJ (2005) The effect of alkali cations on aluminum incorporation in geopolymeric gels. Ind Eng Chem Res 44(4):832–839 Duxson P, Provis JL, Lukey GC, van Deventer JSJ, Separovic F, Gan ZH (2006) 39K NMR of free potassium in geopolymers. Ind Eng Chem Res 45(26):9208–9210 Bortnovsky O, Dědeček J, Tvarůžková Z, Sobalík Z, Šubrt J (2008) Metal ions as probes for characterization of geopolymer materials. J Am Ceram Soc 91(9):3052–3057 Najafi Kani E, Allahverdi A, Provis JL (2012) Efflorescence control in geopolymer binders based on natural pozzolan. Cem Concr Compos 34(1):25–33 Škvára F, Kopecký L, Myšková L, Šmilauer V, Alberovská L, Vinšová L (2009) Aluminosilicate polymers—influence of elevated temperatures, efflorescence. Ceram Silik 53(4):276–282 Smith MA, Osborne GJ (1977) Slag/fly ash cements. World Cem Technol 1(6):223–233 Provis JL, Harrex RM, Bernal SA, Duxson P, van Deventer JSJ (2012) Dilatometry of geopolymers as a means of selecting desirable fly ash sources. J Non Cryst Solids 358(16):1930–1937 Palomo A, Alonso S, Fernández-Jiménez A, Sobrados I, Sanz J (2004) Alkaline activation of fly ashes: NMR study of the reaction products. J Am Ceram Soc 87(6):1141–1145 Shigemoto N, Sugiyama S, Hayashi H, Miyaura K (1995) Characterization of Na–X, Na–A, and coal fly ash zeolites and their amorphous precursors by IR, MAS NMR and XPS. J Mater Sci 30(22):5777–5783 Provis JL, Duxson P, van Deventer JSJ (2010) The role of particle technology in developing sustainable construction materials. Adv Powder Technol 21(1):2–7 Lloyd RR (2009) Accelerated ageing of geopolymers. In: Provis JL, van Deventer JSJ (eds) Geopolymers: structure, processing, properties and industrial applications. Woodhead, Cambridge, pp 139–166 De Silva P, Sagoe-Crentsil K (2008) Medium-term phase stability of Na2O–Al2O3–SiO2–H2O geopolymer systems. Cem Concr Res 38(6):870–876 Shi C, Day RL (1996) Selectivity of alkaline activators for the activation of slags. Cem Concr Aggress 18(1):8–14 Richardson IG, Brough AR, Groves GW, Dobson CM (1994) The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C–S–H) paste. Cem Concr Res 24(5):813–829 Ben Haha M, Le Saout G, Winnefeld F, Lothenbach B (2011) Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem Concr Res 41(3):301–310 Ismail I, Bernal SA, Provis JL, San Nicolas R, Hamdan S, van Deventer JSJ (2014) Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cem Concr Compos 45:125–135 Wang SD, Scrivener KL (1995) Hydration products of alkali-activated slag cement. Cem Concr Res 25(3):561–571 Krivenko PV (1994) Alkaline cements. In: Krivenko PV (ed) Proceedings of the first international conference on alkaline cements and concretes, Kiev, Ukraine, VIPOL Stock Company, pp 11–129 Gruskovnjak A, Lothenbach B, Holzer L, Figi R, Winnefeld F (2006) Hydration of alkali-activated slag: comparison with ordinary Portland cement. Adv Cem Res 18(3):119–128 Hong S-Y, Glasser FP (2002) Alkali sorption by C–S–H and C–A–S–H gels: part II. Role of alumina. Cem Concr Res 32(7):1101–1111 García-Lodeiro I, Palomo A, Fernández-Jiménez A, Macphee DE (2011) Compatibility studies between N–A–S–H and C–A–S–H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cem Concr Res 41(9):923–931 Puertas F, Fernández-Jiménez A, Blanco-Varela MT (2004) Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate. Cem Concr Res 34:139–148 Bernal SA, San Nicolas R, Provis JL, Mejía de Gutiérrez R, van Deventer JSJ (2013) Natural carbonation of aged alkali-activated slag concretes. Mater Struct. doi:10.1617/s11527-11013-10089-11522 (in press) Bernal SA, Provis JL, Brice DG, Kilcullen A, Duxson P, van Deventer JSJ (2012) Accelerated carbonation testing of alkali-activated binders significantly underestimates service life: the role of pore solution chemistry. Cem Concr Res 42(10):1317–1326 Bakharev T, Sanjayan JG, Cheng YB (2001) Resistance of alkali-activated slag concrete to alkali-aggregate reaction. Cem Concr Res 31(2):331–334 Fernández-Jiménez A, Puertas F (2002) The alkali-silica reaction in alkali-activated granulated slag mortars with reactive aggregate. Cem Concr Res 32(7):1019–1024 Gifford PM, Gillott JE (1996) Alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR) in activated blast furnace slag cement (ABFSC) concrete. Cem Concr Res 26(1):21–26 Kupwade-Patil K, Allouche EN (2013) Impact of alkali silica reaction on fly ash-based geopolymer concrete. J Mater Civ Eng 25(1):131–139 Lloyd RR, Provis JL, van Deventer JSJ (2010) Pore solution composition and alkali diffusion in inorganic polymer cement. Cem Concr Res 40(9):1386–1392 Ismail I, Bernal SA, Provis JL, Hamdan S, van Deventer JSJ (2013) Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure. Mater Struct 46(3):361–373