Prevalence and prognostic value of plasma glucose abnormalities among full-term and late-preterm neonates with sepsis

Springer Science and Business Media LLC - Tập 67 - Trang 1-7 - 2019
Muhammad Said El-Mekkawy1, Dalia Monir Ellahony1
1Department of Pediatrics, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt

Tóm tắt

Neonatal sepsis is occasionally associated with abnormal plasma glucose level, but data in full-term and late-preterm neonates is limited. Our aim was to determine prevalence and prognostic value of plasma glucose abnormalities among these patients. We conducted a prospective observational study of 174 full-term and late-preterm neonates with culture-proven or possible sepsis. Plasma glucose level was measured upon neonatal intensive care unit (NICU) admission. The primary outcome was NICU mortality. Hyperglycemia occurred in 12.6%, while hypoglycemia occurred in 10.9% of infants with sepsis. The mortality rate was 36.4%, 47.4%, and 16.5% among infants with hyperglycemia, hypoglycemia, and normoglycemia respectively (P = 0.002). Both hyperglycemia and hypoglycemia were independent predictors of mortality [adjusted OR and 95% CI = 2.89 (1.03–8.13) and 3.86 (1.32–11.26) respectively]. Mechanical ventilation rate was higher among the hypoglycemia subgroup compared with both the hyperglycemia and normoglycemia subgroups (P = 0.046), but glycemic status was not associated with the length of NICU stay. Hypoglycemia was also associated with a lower platelet count (P = 0.015). Plasma glucose abnormalities are not uncommon in neonatal sepsis. Both hypoglycemia and hyperglycemia could be utilized for mortality prediction. Besides, hypoglycemia was associated with a higher mechanical ventilation rate. However, these associations might not be causal.

Tài liệu tham khảo

Brocklehurst P, Farrell B, King A et al (2011) Treatment of neonatal sepsis with intravenous immune globulin. N Engl J Med 365:1201–1211 Ottolini MC, Lundgren K, Mirkinson LJ, Cason S, Ottolini MG (2003) Utility of complete blood count and blood culture screening to diagnose neonatal sepsis in the asymptomatic at risk newborn. Pediatr Infect Dis J 22:430–434 Manzoni P, Castagnola E, Mostert M, Sala U, Galletto P, Gomirato G (2006) Hyperglycaemia as a possible marker of invasive fungal infection in preterm neonates. Acta Paediatr 95(4):486–493 Cornblath M, Hawdon JM, Williams AF et al (2000) Controversies regarding definition of neonatal hypoglycemia: suggested operational thresholds. Pediatrics 105(5):1141–1145 Burns CM, Rutherford MA, Boardman JP, Cowan FM (2008) Patterns of cerebral injury and neurodevelopmental outcomes after symptomatic neonatal hypoglycemia. Pediatrics 122(1):65e74 Arhan E, Öztürk Z, Serdaroğlu A, Aydın K, Hirfanoğlu T, Akbaş Y (2017) Neonatal hypoglycemia: a wide range of electroclinical manifestations and seizure outcomes. Eur J Paediatr Neurol 21(5):738–744 Hemachandra AH, Cowett RM (1999) Neonatal hyperglycemia. NeoReviews 20(7):e16–e24 Mitanchez-Mokhtari D, Lahlou N, Kieffer F, Magny JF, Roger M, Voyer M (2004) Both relative insulin resistance and defective islet beta-cell processing of proinsulin are responsible for transient hyperglycemia in extremely preterm infants. Pediatrics 113:537–541 Limesand SW, Rozance PJ, Zerbe GO, Hutton JC, Hay WW Jr (2006) Attenuated insulin release and storage in fetal sheep pancreatic islets with intrauterine growth restriction. Endocrinology 147:1488–1497 Stark AR, Carlo WA, Tyson JE et al (2001) Adverse effects of early dexamethasone in extremely-low-birth-weight infants: National Institute of Child Health and Human Development Neonatal Research Network. N Engl J Med 344:95–101 Beardsall K, Vanhaesebrouck S, Ogilvy-Stuart AL et al (2010) Prevalence and determinants of hyperglycemia in very low birth weight infants: cohort analyses of the NIRTURE study. J. Pediatr 157(5):715–9.e1-3 Hays SP, Smith EO, Sunehag AL (2006) Hyperglycemia is a risk factor for early death and morbidity in extremely low birth-weight infants. Pediatrics 118:1811–1818 Auerbach A, Eventov-Friedman S, Arad I, Peleg O et al (2013) Long duration of hyperglycemia in the first 96 hours of life is associated with severe intraventricular hemorrhage in preterm infants. J Pediatr 163(2):388–393 Ertl T, Gyarmati J, Gaal V, Szabo I (2006) Relationship between hyperglycemia and retinopathy of prematurity in very low birth weight infants. Biol Neonate 89:56–59 Lean WL, Kamlin CO, Garland SM, Jacobs SE (2015) Stable rates of neonatal sepsis in a tertiary neonatal unit. J Paediatr Child Health 51:294–299 Poggi C, Bianconi T, Gozzini E, Generoso M, Dani C (2015) Presepsin for the detection of late onset sepsis in preterm newborns. Pediatrics 135:68–75 Thornton PS, Stanley CA, De Leon DD et al (2015) Recommendations from the Pediatric Endocrine Society for evaluation and management of persistent hypoglycemia in neonates, infants, and children. J Pediatr 167(2):238–245 Mohammed MM, Abdel Rahman SM (2016) Frequency of neonatal hyperglycaemia at Gaafar Ibnauf Children’s Hospital: clinical aspects and short term outcome. Sudan J Paediatr 16(1):45–52 Ahmad S, Khalid R (2012) Blood glucose levels in neonatal sepsis and probable sepsis and its association with mortality. J Coll Physicians Surg Pak 22(1):15–18 van der Lugt NM, Smits-Wintjens VE, van Zwieten PH, Walther FJ (2010) Short and long term outcome of neonatal hyperglycemia in very preterm infants: a retrospective follow-up study. BMC Pediatrics 10:52 Kao LS, Morris BH, Lally KP, Stewart CD, Huseby V, Kennedy KA (2006) Hyperglycemia and morbidity and mortality in extremely low birth weight infants. J Perinatol 26(12):730–736 Marik PE, Raghavan M (2004) Stress-hyperglycemia, insulin and immunomodulation in sepsis. Intensive Care Med 30:748–756 Rosa AP, Mescka CP, Catarino FM et al (2018) Neonatal hyperglycemia induces cell death in the rat brain. Metab Brain Dis 33(1):333–342 Rosa AP, Jacques CE, de Souza LO et al (2015) Neonatal hyperglycemia induces oxidative stress in the rat brain: the role of pentose phosphate pathway enzymes and NADPH oxidase. Mol Cell Biochem 403(1–2):159–167 Yang CM, Lin CC, Hsieh HL (2017) High-glucose-derived oxidative stress-dependent Heme Oxygenase-1 expression from astrocytes contributes to the neuronal apoptosis. Mol Neurobiol 54(1):470–483 Zhao Y, Wu Y, Xiang B. Tight glycemic control in critically Ill pediatric patients: A meta-analysis and systematic review of randomized controlled trials. Pediatr Res 2018. doi: https://doi.org/10.1038/pr.2017.310. [Epub ahead of print] Review. Chen L, Li T, Fang F, Zhang Y, Faramand A (2018) Tight glycemic control in critically ill pediatric patients: a systematic review and meta-analysis. Crit Care 22(1):57 Rhodes A, Evans LE, Alhazzani W et al (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43(3):304–377 Alsweiler JM, Kuschel CA, Bloomfield FH (2007) Survey of the management of neonatal hyperglycaemia in Australasia. J Paediatr Child Health 43:632 Charoo BA, Iqbal JI, Iqbal Q, Mushtaq S, Bhat AW, Nawaz I (2009) Nosocomial sepsis-induced late onset thrombocytopenia in a neonatal tertiary care unit a prospective study. Hematol Oncol Stem Cell Ther 2:349–353