Natural convection heat transfer in a nanofluid-filled cavity with double sinusoidal wavy walls of various phase deviations
Tài liệu tham khảo
Ostrach, 1988, Natural convection in enclosures, J. Heat Transf., 110, 1175, 10.1115/1.3250619
Moore, 1999, Thermal analysis of automotive lamps using the ADINA-F coupled specular radiation and natural convection model, Comput. Struct., 72, 17, 10.1016/S0045-7949(99)00014-0
Li, 2015, Investigation of natural convection heat transfer around a radial heat sink with a concentric ring, Int. J. Heat Mass Transf., 89, 159, 10.1016/j.ijheatmasstransfer.2015.04.106
Singh, 2015, Natural convection heat transfer from a finned sphere, Int. J. Heat Mass Transf., 81, 305, 10.1016/j.ijheatmasstransfer.2014.10.028
Mohyud-Din, 2015, On heat and mass transfer analysis for the flow of a nanofluid between rotating parallel plates, Aerosp. Sci. Tech., 46, 514, 10.1016/j.ast.2015.07.020
Ahmed, 2016, Flow and heat transfer of nanofluid in an asymmetric channel with expanding and contracting walls suspended by carbon nanotubes: a numerical investigation, Aerosp. Sci. Tech., 48, 53, 10.1016/j.ast.2015.10.022
Zaidi, 2016, Convective heat transfer and MHD effects on two dimensional wall jet flow of a nanofluid with passive control mode, Aerosp. Sci. Tech., 49, 225, 10.1016/j.ast.2015.12.008
Sajjadi, 2012, Lattice Boltzmann simulation of turbulent natural convection in tall enclosures using Cu/water nanofluid, Numeri. Heat Transf. A, 62, 512, 10.1080/10407782.2012.703054
Kefayati, 2013, Lattice Boltzmann simulation of natural convection in nanofluid-filled 2D long enclosures at presence of magnetic field, Theor. Comput. Dyn., 27, 865, 10.1007/s00162-012-0290-x
Kefayati, 2013, Effect of a magnetic field on natural convection in an open cavity subjugated to Water/Alumina nanofluid using lattice Boltzmann method, Int. Commun. Heat Mass Transf., 40, 67, 10.1016/j.icheatmasstransfer.2012.10.024
Kefayati, 2014, Simulation of ferrofluid heat dissipation effect on natural convection at an inclined cavity filled with kerosene/cobalt utilizing the Lattice Boltzmann method, Numer. Heat Transf. A, 65, 509, 10.1080/10407782.2013.836022
Kefayati, 2015, FDLBM simulation of entropy generation due to natural convection in an enclosure filled with non-Newtonian nanofluid, Powder Technol., 273, 176, 10.1016/j.powtec.2014.12.042
G.R. Kefayati, R.R. Huilgol, Lattice Boltzmann Method for simulation of mixed convection of a Bingham fluid in a lid-driven cavity, Int. J. Heat Mass Transf. 103, 725–743.
Kefayati, 2016, Heat transfer and entropy generation of natural convection on non-Newtonian nanofluids in a porous cavity, Powder Technol., 299, 127, 10.1016/j.powtec.2016.05.032
Kefayati, 2017, Simulation of natural convection and entropy generation of non-Newtonian nanofluid in a porous cavity using Buongiorno’s mathematical model, Int. J. Heat Mass Transf., 112, 709, 10.1016/j.ijheatmasstransfer.2017.04.121
U. Khan, N. Ahmed, S.T. Mohyud-Din, Analysis of magnetohydrodynamic flow and heat transfer of Cu-water nanofluid between parallel plates for different shapes of nanoparticles, Neural Comp. Appl. (2016) 1–9.
U. Khan, N. Ahmed, S.T. Mohyud-Din, B. Bin-Mohsin, Nonlinear radiation effects on MHD flow of nanofluid over a stretching/shrinking wedge, Neural Comp. Appl. (2016) 1–10.
Ahmed, 2014, MHD flow of an incompressible fluid through porous medium between dilating and squeezing permeable walls, J. Porous Media, 17, 861, 10.1615/JPorMedia.v17.i10.20
Kefayati, 2013, Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with sinusoidal temperature distribution, Powder Technol., 243, 171, 10.1016/j.powtec.2013.03.047
Kefayati, 2016, Simulation of heat transfer and entropy generation of MHD natural convection of non-Newtonian nanofluid in an enclosure, Int. J. Heat Mass Transf., 92, 1066, 10.1016/j.ijheatmasstransfer.2015.09.078
Khan, 2015, Heat transfer effects on carbon nanotubes suspended nanofluid flow in a channel with non-parallel walls under the effect of velocity slip boundary condition: a numerical study, Neural Comput. Appl., 1
Khan, 2017, Numerical Investigation for three dimensional squeezing flow of nanofluid in a rotating channel with lower stretching wall suspended by carbon nanotubes, Appl. Therm. Eng., 113, 1107, 10.1016/j.applthermaleng.2016.11.104
Hatami, 2016, Optimization of a circular-wavy cavity filled by nanofluid under the natural convection heat transfer condition, Int. J. Heat Mass Transf., 98, 758, 10.1016/j.ijheatmasstransfer.2016.03.063
Sheikholeslami, 2014, MHD natural convection in a nanofluid filled inclined enclosure with sinusoidal wall using CVFVM, Neural Comput. Appl., 24, 873, 10.1007/s00521-012-1316-4
Sheremet, 2016, Natural convective heat transfer and nanofluid flow in a cavity with top wavy wall and corner heater, J. Hydrodyn. B, 28, 873, 10.1016/S1001-6058(16)60688-1
Motlagh, 2017, Natural convection of Al2O3-water nanofluid in an inclined cavity using Buongiorno’s two-phase model, Int. J. Therm. Sci., 111, 310, 10.1016/j.ijthermalsci.2016.08.022
Kefayati, 2017, Mixed convection of non-Newtonian nanofluid in an enclosure using Buongiorno’s mathematical model, Int. J. Heat Mass Transf., 108, 1481, 10.1016/j.ijheatmasstransfer.2016.12.103
Yoo, 2007, Study of thermal conductivity of nanofluids for the application of heat transfer fluids, Thermochim. Acta, 455, 66, 10.1016/j.tca.2006.12.006
Cui, 2015, A three-dimensional simulation of transient natural convection in a triangular cavity, Int. J. Heat Mass Transf., 85, 1012, 10.1016/j.ijheatmasstransfer.2015.02.055
Rostami, 2015, Optimization of conjugate heat transfer in wavy walls microchannels, Appl. Therm. Eng., 82, 318, 10.1016/j.applthermaleng.2015.02.069
Deng, 2008, Natural convection in a rectangular enclosure with sinusoidal temperature distributions on both side walls, Numer Heat Transf. A, 54, 507, 10.1080/01457630802186080
Alsabery, 2016, Heatline visualization of conjugate natural convection in a square cavity filled with nanofluid with sinusoidal temperature variations on both horizontal walls, Int. J. Heat Mass Transf., 100, 835, 10.1016/j.ijheatmasstransfer.2016.05.031
Zhou, 2016, Design of microchannel heat sink with wavy channel and its time-efficient optimization with combined RSM and FVM methods, Int. J. Heat Mass Tranf., 103, 715, 10.1016/j.ijheatmasstransfer.2016.07.100
Documentation, 2011, Release, 14, 5
He, 2009, Numerical investigation into the convective heat transfer of TiO2 nanofluids flowing through a straight tube under the laminar flow conditions, Appl. Therm. Eng., 29, 1965, 10.1016/j.applthermaleng.2008.09.020
Apostolou, 2008, Discrete element simulation of liquid-particle flows, Comput. Chem. Eng., 32, 841, 10.1016/j.compchemeng.2007.03.018
Staffman, 1965, The lift on a small sphere in a slow shear flow, J. Fluid Mech., 22, 385, 10.1017/S0022112065000824
Sheikholeslami, 2014, Natural convection heat transfer in a cavity with sinusoidal wall filled with CuO-water nanofluid with the presence of magnetic field, J. Taiwan Inst. Chem. E, 45, 40, 10.1016/j.jtice.2013.04.019
Bianco, 2009, Numerical investigation of nanofluids forced convection in circular tubes, Appl. Therm. Eng., 29, 3632, 10.1016/j.applthermaleng.2009.06.019
Kumar, 2017, Numerical study of convective heat transfer with nanofluid in turbulent flow using a Lagrangian-Eulerian approach, Appl. Therm. Eng., 111, 1674, 10.1016/j.applthermaleng.2016.08.038
Abu-Nada, 2008, Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids, Int. Commun. Heat Mass Transf., 35, 657, 10.1016/j.icheatmasstransfer.2007.11.004
Rahimi-Gorji, 2015, Statistical optimization of microchannel heat sink (MCHS) geometry cooled by different nanofluids using RSM analysis, Eur. Phys. J. Plus, 130, 1, 10.1140/epjp/i2015-15022-8
Yaseen, 2014, numerical study of steady natural convection flow in a prismatic enclosure with strip heater on bottom wall using flexpde, Diyala J. Eng. Sci., 7, 61, 10.24237/djes.2014.07105
Ling, 2013, Effects of temperature and particle concentration on viscosity of nanofluids, Funct. Mater., 44, 92
Esfe, 2016, An experimental study on thermophysical properties and heat transfer characteristics of low volume concentrations of Ag-water nanofluid, Int. Commun. Heat Mass Transf., 74, 91, 10.1016/j.icheatmasstransfer.2016.03.004