Sphingolipids as modulators of membrane proteins
Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids - Tập 1841 - Trang 665-670 - 2014
Tài liệu tham khảo
Kaiser, 2011, Molecular convergence of bacterial and eukaryotic surface order, J. Biol. Chem., 286, 40631, 10.1074/jbc.M111.276444
Hannun, 2008, Principles of bioactive lipid signalling: lessons from sphingolipids, Nat. Rev. Mol. Cell Biol., 9, 139, 10.1038/nrm2329
Slotte, 2013, Biological functions of sphingomyelins, Prog. Lipid Res., 52, 424, 10.1016/j.plipres.2013.05.001
Holthuis, 2001, The organizing potential of sphingolipids in intracellular membrane transport, Physiol. Rev., 81, 1689, 10.1152/physrev.2001.81.4.1689
Niemela, 2009, Atom-scale molecular interactions in lipid raft mixtures, Biochim. Biophys. Acta, 1788, 122, 10.1016/j.bbamem.2008.08.018
Simons, 1997, Functional rafts in cell membranes, Nature, 387, 569, 10.1038/42408
Hooper, 1999, Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae (review), Mol. Membr. Biol., 16, 145, 10.1080/096876899294607
Ernst, 2012, Mutual recognition of sphingolipid molecular species in membranes, Biochim. Biophys. Acta, 1818, 2616, 10.1016/j.bbamem.2012.06.004
Guo, 2002, A solid-state NMR study of phospholipid–cholesterol interactions: sphingomyelin–cholesterol binary systems, Biophys. J., 83, 1465, 10.1016/S0006-3495(02)73917-9
Huang, 1999, A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers, Biophys. J., 76, 2142, 10.1016/S0006-3495(99)77369-8
Lonnfors, 2011, Sterols have higher affinity for sphingomyelin than for phosphatidylcholine bilayers even at equal acyl-chain order, Biophys. J., 100, 2633, 10.1016/j.bpj.2011.03.066
Ramstedt, 1999, Interaction of cholesterol with sphingomyelins and acyl-chain-matched phosphatidylcholines: a comparative study of the effect of the chain length, Biophys. J., 76, 908, 10.1016/S0006-3495(99)77254-1
van Duyl, 2002, Influence of hydrophobic mismatch and palmitoylation on the association of transmembrane alpha-helical peptides with detergent-resistant membranes, FEBS Lett., 523, 79, 10.1016/S0014-5793(02)02939-3
Wolf, 2001, Cholesterol favors phase separation of sphingomyelin, Biophys. Chem., 89, 163, 10.1016/S0301-4622(00)00226-X
Tierney, 2005, Elasticity and phase behavior of DPPC membrane modulated by cholesterol, ergosterol, and ethanol, Biophys. J., 89, 2481, 10.1529/biophysj.104.057943
Kusumi, 2012, Dynamic organizing principles of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of Singer and Nicolson's fluid-mosaic model, Annu. Rev. Cell Dev. Biol., 28, 215, 10.1146/annurev-cellbio-100809-151736
Simons, 2011, Membrane organization and lipid rafts, Cold Spring Harb. Perspect. Biol., 3, a004697, 10.1101/cshperspect.a004697
Sonnino, 2013, Membrane domains and the “lipid raft” concept, Curr. Med. Chem., 20, 4
Cannon, 2006, Cholesterol supports headgroup superlattice domain formation in fluid phospholipid/cholesterol bilayers, J. Phys. Chem. B, 110, 6339, 10.1021/jp0558371
Graber, 2012, Phosphatidylinositol-4,5-bisphosphate ionization and domain formation in the presence of lipids with hydrogen bond donor capabilities, Chem. Phys. Lipids, 165, 696, 10.1016/j.chemphyslip.2012.07.003
Sennato, 2005, Evidence of domain formation in cardiolipin-glycerophospholipid mixed monolayers. A thermodynamic and AFM study, J. Phys. Chem. B, 109, 15950, 10.1021/jp051893q
Engelman, 2005, Membranes are more mosaic than fluid, Nature, 438, 578, 10.1038/nature04394
Sonnino, 2013, Gangliosides as regulators of cell signaling: ganglioside–protein interactions or ganglioside-driven membrane organization?, J. Neurochem., 124, 432, 10.1111/jnc.12088
Sharpe, 2010, A comprehensive comparison of transmembrane domains reveals organelle-specific properties, Cell, 142, 158, 10.1016/j.cell.2010.05.037
Colbeau, 1971, Enzymic characterization and lipid composition of rat liver subcellular membranes, Biochim. Biophys. Acta, 249, 462, 10.1016/0005-2736(71)90123-4
Surma, 2012, Lipid-dependent protein sorting at the trans-Golgi network, Biochim. Biophys. Acta, 1821, 1059, 10.1016/j.bbalip.2011.12.008
Kahya, 2005, Raft partitioning and dynamic behavior of human placental alkaline phosphatase in giant unilamellar vesicles, Biochemistry, 44, 7479, 10.1021/bi047429d
van Meer, 2008, Membrane lipids: where they are and how they behave, Nat. Rev. Mol. Cell Biol., 9, 112, 10.1038/nrm2330
Mahfoud, 2002, Identification of a common sphingolipid-binding domain in Alzheimer, prion, and HIV-1 proteins, J. Biol. Chem., 277, 11292, 10.1074/jbc.M111679200
Contreras, 2012, Molecular recognition of a single sphingolipid species by a protein's transmembrane domain, Nature, 481, 525, 10.1038/nature10742
Kristan, 2009, Molecular mechanism of pore formation by actinoporins, Toxicon, 54, 1125, 10.1016/j.toxicon.2009.02.026
Bernheimer, 1976, Properties of a toxin from the sea anemone Stoichacis helianthus, including specific binding to sphingomyelin, Proc. Natl. Acad. Sci. U. S. A., 73, 467, 10.1073/pnas.73.2.467
Bakrac, 2008, Molecular determinants of sphingomyelin specificity of a eukaryotic pore-forming toxin, J. Biol. Chem., 283, 18665, 10.1074/jbc.M708747200
Ernst, 2010, Determinants of specificity at the protein–lipid interface in membranes, FEBS Lett., 584, 1713, 10.1016/j.febslet.2009.12.060
De Colibus, 2012, Structures of lysenin reveal a shared evolutionary origin for pore-forming proteins and its mode of sphingomyelin recognition, Structure, 20, 1498, 10.1016/j.str.2012.06.011
Hammache, 1999, Human erythrocyte glycosphingolipids as alternative cofactors for human immunodeficiency virus type 1 (HIV-1) entry: evidence for CD4-induced interactions between HIV-1 gp120 and reconstituted membrane microdomains of glycosphingolipids (Gb3 and GM3), J. Virol., 73, 5244, 10.1128/JVI.73.6.5244-5248.1999
Choo-Smith, 1997, Acceleration of amyloid fibril formation by specific binding of Abeta-(1–40) peptide to ganglioside-containing membrane vesicles, J. Biol. Chem., 272, 22987, 10.1074/jbc.272.37.22987
Choo-Smith, 1997, The interaction between Alzheimer amyloid beta(1–40) peptide and ganglioside GM1-containing membranes, FEBS Lett., 402, 95, 10.1016/S0014-5793(96)01504-9
Hammache, 1998, Specific interaction of HIV-1 and HIV-2 surface envelope glycoproteins with monolayers of galactosylceramide and ganglioside GM3, J. Biol. Chem., 273, 7967, 10.1074/jbc.273.14.7967
Hammache, 1998, Sequential interaction of CD4 and HIV-1 gp120 with a reconstituted membrane patch of ganglioside GM3: implications for the role of glycolipids as potential HIV-1 fusion cofactors, Biochem. Biophys. Res. Commun., 246, 117, 10.1006/bbrc.1998.8531
Prusiner, 1998, Prions, Proc. Natl. Acad. Sci. U. S. A., 95, 13363, 10.1073/pnas.95.23.13363
Ward, 2013, The molecular basis of ceramide-1-phosphate recognition by C2 domains, J. Lipid Res., 54, 636, 10.1194/jlr.M031088
Aubert-Jousset, 2004, The combinatorial extension method reveals a sphingolipid binding domain on pancreatic bile salt-dependent lipase: role in secretion, Structure, 12, 1437, 10.1016/j.str.2004.05.016
Popoff, 2011, COPI budding within the Golgi stack, Cold Spring Harb. Perspect. Biol., 3, a005231, 10.1101/cshperspect.a005231
Brügger, 2000, Evidence for segregation of sphingomyelin and cholesterol during formation of COPI-coated vesicles, J. Cell Biol., 151, 507, 10.1083/jcb.151.3.507
Lemmon, 2010, Cell signaling by receptor tyrosine kinases, Cell, 141, 1117, 10.1016/j.cell.2010.06.011
Ward, 2007, The insulin and EGF receptor structures: new insights into ligand-induced receptor activation, Trends Biochem. Sci., 32, 129, 10.1016/j.tibs.2007.01.001
Ullrich, 1990, Signal transduction by receptors with tyrosine kinase activity, Cell, 61, 203, 10.1016/0092-8674(90)90801-K
Laine, 1973, Incorporation of exogenous glycosphingolipids in plasma membranes of cultured hamster cells and concurrent change of growth behavior, Biochem. Biophys. Res. Commun., 54, 1039, 10.1016/0006-291X(73)90798-5
Bremer, 1984, Ganglioside-mediated modulation of cell growth, growth factor binding, and receptor phosphorylation, J. Biol. Chem., 259, 6818, 10.1016/S0021-9258(17)39801-0
Bremer, 1986, Ganglioside-mediated modulation of cell growth. Specific effects of GM3 on tyrosine phosphorylation of the epidermal growth factor receptor, J. Biol. Chem., 261, 2434, 10.1016/S0021-9258(17)35954-9
Coskun, 2011, Regulation of human EGF receptor by lipids, Proc. Natl. Acad. Sci. U. S. A., 108, 9044, 10.1073/pnas.1105666108
Arkhipov, 2013, Architecture and membrane interactions of the EGF receptor, Cell, 152, 557, 10.1016/j.cell.2012.12.030
Michailidis, 2011, Phosphatidylinositol-4,5-bisphosphate regulates epidermal growth factor receptor activation, Pflugers Arch., 461, 387, 10.1007/s00424-010-0904-3
Nojiri, 1991, J. Biol. Chem., 266, 4531, 10.1016/S0021-9258(20)64355-1
Tagami, 2002, Ganglioside GM3 participates in the pathological conditions of insulin resistance, J. Biol. Chem., 277, 3085, 10.1074/jbc.M103705200
Yamashita, 2003, Enhanced insulin sensitivity in mice lacking ganglioside GM3, Proc. Natl. Acad. Sci. U. S. A., 100, 3445, 10.1073/pnas.0635898100
Kabayama, 2007, Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance, Proc. Natl. Acad. Sci. U. S. A., 104, 13678, 10.1073/pnas.0703650104
Rusnati, 1999, Interaction of fibroblast growth factor-2 (FGF-2) with free gangliosides: biochemical characterization and biological consequences in endothelial cell cultures, Mol. Biol. Cell, 10, 313, 10.1091/mbc.10.2.313
Rusnati, 2002, Cell membrane GM1 ganglioside is a functional coreceptor for fibroblast growth factor 2, Proc. Natl. Acad. Sci. U. S. A., 99, 4367, 10.1073/pnas.072651899
Rabin, 1995, GM1 ganglioside activates the high-affinity nerve growth factor receptor trkA, J. Neurochem., 65, 347, 10.1046/j.1471-4159.1995.65010347.x
Mutoh, 2002, Stable transfection of GM1 synthase gene into GM1-deficient NG108-15 cells, CR-72 cells, rescues the responsiveness of Trk-neurotrophin receptor to its ligand, NGF, Neurochem. Res., 27, 801, 10.1023/A:1020209008169
Mutoh, 1998, Glucosylceramide synthase inhibitor inhibits the action of nerve growth factor in PC12 cells, J. Biol. Chem., 273, 26001, 10.1074/jbc.273.40.26001
Mutoh, 1995, Ganglioside GM1 binds to the Trk protein and regulates receptor function, Proc. Natl. Acad. Sci. U. S. A., 92, 5087, 10.1073/pnas.92.11.5087
Duchemin, 2008, GM1-induced activation of phosphatidylinositol 3-kinase: involvement of Trk receptors, J. Neurochem., 104, 1466, 10.1111/j.1471-4159.2007.05088.x
Wright, 2000, The L6 membrane proteins—a new four-transmembrane superfamily, Protein Sci., 9, 1594, 10.1110/ps.9.8.1594
Todeschini, 2008, Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains, Biochim. Biophys. Acta, 1780, 421, 10.1016/j.bbagen.2007.10.008
Tarrant, 2003, Tetraspanins: molecular organisers of the leukocyte surface, Trends Immunol., 24, 610, 10.1016/j.it.2003.09.011
Hakomori, 2002, The glycosynapse, Proc. Natl. Acad. Sci. U. S. A., 8, 225, 10.1073/pnas.012540899
Zheng, 1993, Regulatory role of GM3 ganglioside in alpha 5 beta 1 integrin receptor for fibronectin-mediated adhesion of FUA169 cells, J. Biol. Chem., 268, 2217, 10.1016/S0021-9258(18)53984-3
Ono, 2001, GM3 ganglioside inhibits CD9-facilitated haptotactic cell motility: coexpression of GM3 and CD9 is essential in the downregulation of tumor cell motility and malignancy, Biochemistry, 40, 6414, 10.1021/bi0101998
Ono, 2000, Glycosylation effect on membrane domain (GEM) involved in cell adhesion and motility: a preliminary note on functional alpha3, alpha5-CD82 glycosylation complex in ldlD 14 cells, Biochem. Biophys. Res. Commun., 279, 744, 10.1006/bbrc.2000.4030
Todeschini, 2007, Ganglioside GM2-tetraspanin CD82 complex inhibits met and its cross-talk with integrins, providing a basis for control of cell motility through glycosynapse, J. Biol. Chem., 282, 8123, 10.1074/jbc.M611407200
Todeschini, 2008, Ganglioside GM2/GM3 complex affixed on silica nanospheres strongly inhibits cell motility through CD82/cMet-mediated pathway, Proc. Natl. Acad. Sci. U. S. A., 105, 1925, 10.1073/pnas.0709619104
Haberkant, 2009, Protein-lipid interactions: paparazzi hunting for snap-shots, Biological chemistry, 390, 795, 10.1515/BC.2009.074