Sphingolipids as modulators of membrane proteins

Andreas Max Ernst1, Britta Brügger1
1Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany

Tài liệu tham khảo

Kaiser, 2011, Molecular convergence of bacterial and eukaryotic surface order, J. Biol. Chem., 286, 40631, 10.1074/jbc.M111.276444 Hannun, 2008, Principles of bioactive lipid signalling: lessons from sphingolipids, Nat. Rev. Mol. Cell Biol., 9, 139, 10.1038/nrm2329 Slotte, 2013, Biological functions of sphingomyelins, Prog. Lipid Res., 52, 424, 10.1016/j.plipres.2013.05.001 Holthuis, 2001, The organizing potential of sphingolipids in intracellular membrane transport, Physiol. Rev., 81, 1689, 10.1152/physrev.2001.81.4.1689 Niemela, 2009, Atom-scale molecular interactions in lipid raft mixtures, Biochim. Biophys. Acta, 1788, 122, 10.1016/j.bbamem.2008.08.018 Simons, 1997, Functional rafts in cell membranes, Nature, 387, 569, 10.1038/42408 Hooper, 1999, Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae (review), Mol. Membr. Biol., 16, 145, 10.1080/096876899294607 Ernst, 2012, Mutual recognition of sphingolipid molecular species in membranes, Biochim. Biophys. Acta, 1818, 2616, 10.1016/j.bbamem.2012.06.004 Guo, 2002, A solid-state NMR study of phospholipid–cholesterol interactions: sphingomyelin–cholesterol binary systems, Biophys. J., 83, 1465, 10.1016/S0006-3495(02)73917-9 Huang, 1999, A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers, Biophys. J., 76, 2142, 10.1016/S0006-3495(99)77369-8 Lonnfors, 2011, Sterols have higher affinity for sphingomyelin than for phosphatidylcholine bilayers even at equal acyl-chain order, Biophys. J., 100, 2633, 10.1016/j.bpj.2011.03.066 Ramstedt, 1999, Interaction of cholesterol with sphingomyelins and acyl-chain-matched phosphatidylcholines: a comparative study of the effect of the chain length, Biophys. J., 76, 908, 10.1016/S0006-3495(99)77254-1 van Duyl, 2002, Influence of hydrophobic mismatch and palmitoylation on the association of transmembrane alpha-helical peptides with detergent-resistant membranes, FEBS Lett., 523, 79, 10.1016/S0014-5793(02)02939-3 Wolf, 2001, Cholesterol favors phase separation of sphingomyelin, Biophys. Chem., 89, 163, 10.1016/S0301-4622(00)00226-X Tierney, 2005, Elasticity and phase behavior of DPPC membrane modulated by cholesterol, ergosterol, and ethanol, Biophys. J., 89, 2481, 10.1529/biophysj.104.057943 Kusumi, 2012, Dynamic organizing principles of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of Singer and Nicolson's fluid-mosaic model, Annu. Rev. Cell Dev. Biol., 28, 215, 10.1146/annurev-cellbio-100809-151736 Simons, 2011, Membrane organization and lipid rafts, Cold Spring Harb. Perspect. Biol., 3, a004697, 10.1101/cshperspect.a004697 Sonnino, 2013, Membrane domains and the “lipid raft” concept, Curr. Med. Chem., 20, 4 Cannon, 2006, Cholesterol supports headgroup superlattice domain formation in fluid phospholipid/cholesterol bilayers, J. Phys. Chem. B, 110, 6339, 10.1021/jp0558371 Graber, 2012, Phosphatidylinositol-4,5-bisphosphate ionization and domain formation in the presence of lipids with hydrogen bond donor capabilities, Chem. Phys. Lipids, 165, 696, 10.1016/j.chemphyslip.2012.07.003 Sennato, 2005, Evidence of domain formation in cardiolipin-glycerophospholipid mixed monolayers. A thermodynamic and AFM study, J. Phys. Chem. B, 109, 15950, 10.1021/jp051893q Engelman, 2005, Membranes are more mosaic than fluid, Nature, 438, 578, 10.1038/nature04394 Sonnino, 2013, Gangliosides as regulators of cell signaling: ganglioside–protein interactions or ganglioside-driven membrane organization?, J. Neurochem., 124, 432, 10.1111/jnc.12088 Sharpe, 2010, A comprehensive comparison of transmembrane domains reveals organelle-specific properties, Cell, 142, 158, 10.1016/j.cell.2010.05.037 Colbeau, 1971, Enzymic characterization and lipid composition of rat liver subcellular membranes, Biochim. Biophys. Acta, 249, 462, 10.1016/0005-2736(71)90123-4 Surma, 2012, Lipid-dependent protein sorting at the trans-Golgi network, Biochim. Biophys. Acta, 1821, 1059, 10.1016/j.bbalip.2011.12.008 Kahya, 2005, Raft partitioning and dynamic behavior of human placental alkaline phosphatase in giant unilamellar vesicles, Biochemistry, 44, 7479, 10.1021/bi047429d van Meer, 2008, Membrane lipids: where they are and how they behave, Nat. Rev. Mol. Cell Biol., 9, 112, 10.1038/nrm2330 Mahfoud, 2002, Identification of a common sphingolipid-binding domain in Alzheimer, prion, and HIV-1 proteins, J. Biol. Chem., 277, 11292, 10.1074/jbc.M111679200 Contreras, 2012, Molecular recognition of a single sphingolipid species by a protein's transmembrane domain, Nature, 481, 525, 10.1038/nature10742 Kristan, 2009, Molecular mechanism of pore formation by actinoporins, Toxicon, 54, 1125, 10.1016/j.toxicon.2009.02.026 Bernheimer, 1976, Properties of a toxin from the sea anemone Stoichacis helianthus, including specific binding to sphingomyelin, Proc. Natl. Acad. Sci. U. S. A., 73, 467, 10.1073/pnas.73.2.467 Bakrac, 2008, Molecular determinants of sphingomyelin specificity of a eukaryotic pore-forming toxin, J. Biol. Chem., 283, 18665, 10.1074/jbc.M708747200 Ernst, 2010, Determinants of specificity at the protein–lipid interface in membranes, FEBS Lett., 584, 1713, 10.1016/j.febslet.2009.12.060 De Colibus, 2012, Structures of lysenin reveal a shared evolutionary origin for pore-forming proteins and its mode of sphingomyelin recognition, Structure, 20, 1498, 10.1016/j.str.2012.06.011 Hammache, 1999, Human erythrocyte glycosphingolipids as alternative cofactors for human immunodeficiency virus type 1 (HIV-1) entry: evidence for CD4-induced interactions between HIV-1 gp120 and reconstituted membrane microdomains of glycosphingolipids (Gb3 and GM3), J. Virol., 73, 5244, 10.1128/JVI.73.6.5244-5248.1999 Choo-Smith, 1997, Acceleration of amyloid fibril formation by specific binding of Abeta-(1–40) peptide to ganglioside-containing membrane vesicles, J. Biol. Chem., 272, 22987, 10.1074/jbc.272.37.22987 Choo-Smith, 1997, The interaction between Alzheimer amyloid beta(1–40) peptide and ganglioside GM1-containing membranes, FEBS Lett., 402, 95, 10.1016/S0014-5793(96)01504-9 Hammache, 1998, Specific interaction of HIV-1 and HIV-2 surface envelope glycoproteins with monolayers of galactosylceramide and ganglioside GM3, J. Biol. Chem., 273, 7967, 10.1074/jbc.273.14.7967 Hammache, 1998, Sequential interaction of CD4 and HIV-1 gp120 with a reconstituted membrane patch of ganglioside GM3: implications for the role of glycolipids as potential HIV-1 fusion cofactors, Biochem. Biophys. Res. Commun., 246, 117, 10.1006/bbrc.1998.8531 Prusiner, 1998, Prions, Proc. Natl. Acad. Sci. U. S. A., 95, 13363, 10.1073/pnas.95.23.13363 Ward, 2013, The molecular basis of ceramide-1-phosphate recognition by C2 domains, J. Lipid Res., 54, 636, 10.1194/jlr.M031088 Aubert-Jousset, 2004, The combinatorial extension method reveals a sphingolipid binding domain on pancreatic bile salt-dependent lipase: role in secretion, Structure, 12, 1437, 10.1016/j.str.2004.05.016 Popoff, 2011, COPI budding within the Golgi stack, Cold Spring Harb. Perspect. Biol., 3, a005231, 10.1101/cshperspect.a005231 Brügger, 2000, Evidence for segregation of sphingomyelin and cholesterol during formation of COPI-coated vesicles, J. Cell Biol., 151, 507, 10.1083/jcb.151.3.507 Lemmon, 2010, Cell signaling by receptor tyrosine kinases, Cell, 141, 1117, 10.1016/j.cell.2010.06.011 Ward, 2007, The insulin and EGF receptor structures: new insights into ligand-induced receptor activation, Trends Biochem. Sci., 32, 129, 10.1016/j.tibs.2007.01.001 Ullrich, 1990, Signal transduction by receptors with tyrosine kinase activity, Cell, 61, 203, 10.1016/0092-8674(90)90801-K Laine, 1973, Incorporation of exogenous glycosphingolipids in plasma membranes of cultured hamster cells and concurrent change of growth behavior, Biochem. Biophys. Res. Commun., 54, 1039, 10.1016/0006-291X(73)90798-5 Bremer, 1984, Ganglioside-mediated modulation of cell growth, growth factor binding, and receptor phosphorylation, J. Biol. Chem., 259, 6818, 10.1016/S0021-9258(17)39801-0 Bremer, 1986, Ganglioside-mediated modulation of cell growth. Specific effects of GM3 on tyrosine phosphorylation of the epidermal growth factor receptor, J. Biol. Chem., 261, 2434, 10.1016/S0021-9258(17)35954-9 Coskun, 2011, Regulation of human EGF receptor by lipids, Proc. Natl. Acad. Sci. U. S. A., 108, 9044, 10.1073/pnas.1105666108 Arkhipov, 2013, Architecture and membrane interactions of the EGF receptor, Cell, 152, 557, 10.1016/j.cell.2012.12.030 Michailidis, 2011, Phosphatidylinositol-4,5-bisphosphate regulates epidermal growth factor receptor activation, Pflugers Arch., 461, 387, 10.1007/s00424-010-0904-3 Nojiri, 1991, J. Biol. Chem., 266, 4531, 10.1016/S0021-9258(20)64355-1 Tagami, 2002, Ganglioside GM3 participates in the pathological conditions of insulin resistance, J. Biol. Chem., 277, 3085, 10.1074/jbc.M103705200 Yamashita, 2003, Enhanced insulin sensitivity in mice lacking ganglioside GM3, Proc. Natl. Acad. Sci. U. S. A., 100, 3445, 10.1073/pnas.0635898100 Kabayama, 2007, Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance, Proc. Natl. Acad. Sci. U. S. A., 104, 13678, 10.1073/pnas.0703650104 Rusnati, 1999, Interaction of fibroblast growth factor-2 (FGF-2) with free gangliosides: biochemical characterization and biological consequences in endothelial cell cultures, Mol. Biol. Cell, 10, 313, 10.1091/mbc.10.2.313 Rusnati, 2002, Cell membrane GM1 ganglioside is a functional coreceptor for fibroblast growth factor 2, Proc. Natl. Acad. Sci. U. S. A., 99, 4367, 10.1073/pnas.072651899 Rabin, 1995, GM1 ganglioside activates the high-affinity nerve growth factor receptor trkA, J. Neurochem., 65, 347, 10.1046/j.1471-4159.1995.65010347.x Mutoh, 2002, Stable transfection of GM1 synthase gene into GM1-deficient NG108-15 cells, CR-72 cells, rescues the responsiveness of Trk-neurotrophin receptor to its ligand, NGF, Neurochem. Res., 27, 801, 10.1023/A:1020209008169 Mutoh, 1998, Glucosylceramide synthase inhibitor inhibits the action of nerve growth factor in PC12 cells, J. Biol. Chem., 273, 26001, 10.1074/jbc.273.40.26001 Mutoh, 1995, Ganglioside GM1 binds to the Trk protein and regulates receptor function, Proc. Natl. Acad. Sci. U. S. A., 92, 5087, 10.1073/pnas.92.11.5087 Duchemin, 2008, GM1-induced activation of phosphatidylinositol 3-kinase: involvement of Trk receptors, J. Neurochem., 104, 1466, 10.1111/j.1471-4159.2007.05088.x Wright, 2000, The L6 membrane proteins—a new four-transmembrane superfamily, Protein Sci., 9, 1594, 10.1110/ps.9.8.1594 Todeschini, 2008, Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains, Biochim. Biophys. Acta, 1780, 421, 10.1016/j.bbagen.2007.10.008 Tarrant, 2003, Tetraspanins: molecular organisers of the leukocyte surface, Trends Immunol., 24, 610, 10.1016/j.it.2003.09.011 Hakomori, 2002, The glycosynapse, Proc. Natl. Acad. Sci. U. S. A., 8, 225, 10.1073/pnas.012540899 Zheng, 1993, Regulatory role of GM3 ganglioside in alpha 5 beta 1 integrin receptor for fibronectin-mediated adhesion of FUA169 cells, J. Biol. Chem., 268, 2217, 10.1016/S0021-9258(18)53984-3 Ono, 2001, GM3 ganglioside inhibits CD9-facilitated haptotactic cell motility: coexpression of GM3 and CD9 is essential in the downregulation of tumor cell motility and malignancy, Biochemistry, 40, 6414, 10.1021/bi0101998 Ono, 2000, Glycosylation effect on membrane domain (GEM) involved in cell adhesion and motility: a preliminary note on functional alpha3, alpha5-CD82 glycosylation complex in ldlD 14 cells, Biochem. Biophys. Res. Commun., 279, 744, 10.1006/bbrc.2000.4030 Todeschini, 2007, Ganglioside GM2-tetraspanin CD82 complex inhibits met and its cross-talk with integrins, providing a basis for control of cell motility through glycosynapse, J. Biol. Chem., 282, 8123, 10.1074/jbc.M611407200 Todeschini, 2008, Ganglioside GM2/GM3 complex affixed on silica nanospheres strongly inhibits cell motility through CD82/cMet-mediated pathway, Proc. Natl. Acad. Sci. U. S. A., 105, 1925, 10.1073/pnas.0709619104 Haberkant, 2009, Protein-lipid interactions: paparazzi hunting for snap-shots, Biological chemistry, 390, 795, 10.1515/BC.2009.074