Equivalent Single Layer, Zig-Zag, and Layer Wise theories for variable angle tow composites based on the Generalized Unified Formulation
Tài liệu tham khảo
Hyer, 1991, The use of curvilinear fiber format to improve buckling resistance of composite plates with central circular holes, Compos Struct, 18, 239, 10.1016/0263-8223(91)90035-W
Lopes, 2007, Progressive failure analysis of tow-placed variable-stiffness composite panels, Int J Solids Struct, 44, 8493, 10.1016/j.ijsolstr.2007.06.029
Stodieck, 2013, Improved aeroelastic tailoring using tow-steered composites, Compos Struct, 106, 703, 10.1016/j.compstruct.2013.07.023
Yazdani, 2014, Geometrically non-linear static analysis of unsymmetric composite plates with curvilinear fibres: p-version layerwise approach, Compos Struct, 118, 74, 10.1016/j.compstruct.2014.07.007
Coburn, 2016, Buckling analysis, design and optimization of variable-stiffness sandwich panels, Int J Solids Struct, 96, 217, 10.1016/j.ijsolstr.2016.06.007
Montemurro, 2017, On the effective integration of manufacturability constraints within the multi-scale methodology for designing variable angle-tow laminates, Compos Struct, 161, 145, 10.1016/j.compstruct.2016.11.018
Wu, 2015, Framework for the buckling optimization of variable-angle tow composite plates, AIAA J, 53, 3788, 10.2514/1.J054029
Akhavan, 2014, Damage onset on tow-placed variable stiffness composite laminates, Compos Struct, 113, 419, 10.1016/j.compstruct.2014.03.038
Yazdani, 2014, A p-version layerwise model for large deflection of composite plates with curvilinear fibres, Compos Struct, 108, 181, 10.1016/j.compstruct.2013.09.014
Groh, 2015
Groh, 2016, A computationally efficient 2d model for inherently equilibrated 3d stress predictions in heterogeneous laminated plates. part i: Model formulation, Compos Struct, 156, 171, 10.1016/j.compstruct.2015.11.078
Groh, 2016, A computationally efficient 2d model for inherently equilibrated 3d stress predictions in heterogeneous laminated plates. part ii: Model validation, Compos Struct, 156, 186, 10.1016/j.compstruct.2015.11.077
Demasi, 2008, ∞3 hierarchy plate theories for thick and thin composite plates, Compos Struct, 84, 256, 10.1016/j.compstruct.2007.08.004
Demasi, 2010, Invariant finite element model for composite structures: the generalized unified formulation, AIAA J, 48, 1602, 10.2514/1.45416
Demasi, 2009, ∞6 mixed plate theories based on the generalized unified formulation. Part I: Governing Equations, Compos Struct, 87, 1, 10.1016/j.compstruct.2008.07.013
Demasi, 2009, ∞6 mixed plate theories based on the Generalized Unified Formulation. Part II: Layerwise Theories, Compos Struct, 87, 12, 10.1016/j.compstruct.2008.07.012
Demasi, 2009, ∞6 mixed plate theories based on the Generalized Unified formulation. Part III: Advanced Mixed High Order Shear Deformation Theories, Compos Struct, 87, 183, 10.1016/j.compstruct.2008.07.011
Demasi, 2009, ∞6 mixed plate theories based on the Generalized Unified Formulation. Part IV: Zig-Zag Theories, Compos Struct, 87, 195, 10.1016/j.compstruct.2008.07.010
Demasi, 2009, ∞6 mixed plate theories based on the Generalized Unified Formulation. Part V: Results, Compos Struct, 88, 1, 10.1016/j.compstruct.2008.07.009
Demasi, 2013, Partially layer wise advanced Zig-Zig and hsdt models based on the generalized unified formulation, Eng Struct, 53, 63, 10.1016/j.engstruct.2013.01.021
Demasi, 2015, Generalized unified formulation shell element for functionally graded variable-stiffness composite laminates and aeroelastic applications, Compos Struct, 131, 501, 10.1016/j.compstruct.2015.05.022
Nosier, 1993, Free vibration analysis of laminated plates using a layer-wise theory, AIAA J, 31, 2335, 10.2514/3.11933
Carrera E. A class of two-dimensional theories for anisotropic multilayered plates analysis. Accademia delle Scienze Torino, pages 19–20,1–39; 1995–1996.
Batra, 2002, Higher order piezoelectric plate theory derived from a three-dimensional variational principle, AIAA J, 40, 91, 10.2514/2.1618
Williams, 2014, A new, unified, theoretical framework for the formulation of general nonlinear, single-scale shell theories, Compos Struct, 107, 544, 10.1016/j.compstruct.2013.07.052
Carrera, 2003, Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking, Arch Comput Methods Eng, 10, 215, 10.1007/BF02736224
Carrera, 2016, Free-vibration tailoring of single- and multi-bay laminated box structures by refined beam theories, Thin-Walled Struct, 109, 40, 10.1016/j.tws.2016.09.014
Neves, 2017, Influence of zig-zag and warping effects on buckling of functionally graded sandwich plates according to sinusoidal shear deformation theories, Mech Adv Mater Struct, 24, 360, 10.1080/15376494.2016.1191095
Carrera, 2010, Refined beam elements with arbitrary cross-section geometris, Comput Struct, 88, 283, 10.1016/j.compstruc.2009.11.002
Carrera, 2011, 10.1002/9781119950004
Carrera, 2011, 10.1002/9781119978565
D’Ottavio, 2016, A sublaminate generalized unified fomulation for the analysis of composite structures, Compos Struct, 142, 187, 10.1016/j.compstruct.2016.01.087
D’Ottavio, 2016, Bending analysis of composite laminated and sandwoch structures using sublaminate variable-kineamtic ritz models, Compos Struct, 155, 45, 10.1016/j.compstruct.2016.07.036
D’Ottavio, 2016, Benchmark solutions and assessment of variable kinematics models for global and local buckling of sandwich struts, Compos Struct, 156, 125, 10.1016/j.compstruct.2016.01.019
Demasi L, Ashenafi Y, Cavallaro R, Santarpia E. Generalized unified formulation shell element for functionally graded variable-stiffness composite laminates and aeroelastic applications. Number AIAA 2015-0195. 56th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Missimmee, Florida, American Institute of Aeronautics and Astronautics; 5–9 January 2015.
Tornabene, 2015, Higher-order theories for the free vibrations of doubly-curved laminated panels with curvilinear reinforcing fibers by means of a local version of the GDQ method, Compos Part B, 81, 196, 10.1016/j.compositesb.2015.07.012
Tornabene, 2016, Higher-order structural theories for the static analysis of doubley-curved laminated composite panels reinforced by curvilinear fibers, Thin-Walled Struct, 102, 222, 10.1016/j.tws.2016.01.029
Vescovini, 2016, A variable-kinematic model for variable stiffness plates: vibration and buckling analysis, Compos Struct, 142, 15, 10.1016/j.compstruct.2016.01.068
Carrera, 2000, A priori vs. a posteriori evaluation of transverse stresses in multilayered othotropic plates, Compos Struct, 48, 245, 10.1016/S0263-8223(99)00112-9
