Possible mechanisms for the nucleation of primary fracture zones during deformation-induced phase transformations in solids: II. The role of phase transitions between the states of aggregation
Tóm tắt
The conditions of local phase transitions between the states of aggregation that occur in a solid phase during deformation are analyzed. A hypothesis is proposed that these transitions can play a key role in the nucleation of primary fracture zones in solids. The validities of this hypothesis and the traditional models used to describe the fracture processes in solids are compared using the available experimental data.
Tài liệu tham khảo
L. D. Landau and E. M. Lifshitz, Statistical Physics (Nauka, Moscow, 1978) [in Russian].
V. P. Skripov and V. P. Koverda, Spontaneous Crystallization of Supercooled Liquids (Nauka, Moscow, 1984) [in Russian].
Ya. I. Frenkel’, Kinetic Theory of Liquids (AN SSSR, Moscow, 1959) [in Russian].
S. Z. Bokshtein, Structure and Properties of Metallic Alloys (Metallurgiya, Moscow, 1971) [in Russian].
J. Christian, The Theory of Transformations in Metals and Alloys, Part 1: Equilibrium and General Kinetic Theory (Pergamon, Oxford, 1975; Mir, Moscow, 1978).
I. M. Lifshitz and L. S. Gulida, “On the Theory of Local Melting,” Dokl. Akad. Nauk SSSR 87(3), 377–380 (1952).
I. M. Lifshitz, The Physics of Real Crystals and Random Systems (Nauka, Moscow, 1987) [in Russian].
V. P. Skripov, Metastable Liquid (Nauka, Moscow, 1972) [in Russian].
S. S. Shteinberg, Physical Metallurgy (GNTI, Sverdlovsk, 1961) [in Russian].
I. I. Novikov, Theory of Heat Treatment of Metals (Metallurgiya, Moscow, 1986) [in Russian].
A. G. Khachaturyan, Theory of Phase Transformations and the Structure of Solid Solutions (Nauka, Moscow, 1974) [in Russian].
B. A. Lyubov, Kinetic Theory of Phase Transformations (Metallurgiya, Moscow, 1969) [in Russian].
A. I. Rusanov, Phase Equilibria and Surface Phenomena (Khimiya, Leningrad, 1967) [in Russian].
V. V. Sagaradze, in New Promising Materials and New Technologies (UrO RAN, Yekaterinburg, 2001), pp. 158–195.
B. A. Kolachev, Hydrogen Embrittlement of Metals (Metallurgiya, Moscow, 1985) [in Russian].
O. A. Kaibyshev, Plasticity and Superplasticity of Metals (Metallurgiya, Moscow, 1975) [in Russian].
V. A. Likhachev and V. G. Malinin, Structural-Analytical Theory of Strength (Nauka, St. Petersburg, 1993) [in Russian].
P. I. Polukhin, S. S. Gorelik, and V. K. Vorontsov, Physical Foundations of Plastic Deformation (Metallurgiya, Moscow, 1982) [in Russian].
V. I. Trefilov, Yu. V. Mil’man, and S. A. Firstov, Physical Foundations of the Strength of Refractory Metals (Naukova Dumka, Kiev, 1975) [in Russian].
Physical Metallurgy, Ed. by R. W. Cahn and P. Haasen, (North-Holland, Amsterdam, 1965; Mir, Moscow, 1968).
R. W. K. Honeycombe, The Plastic Deformation of Metals (Edvard Arnold, London, 1968; Mir, Moscow, 1972).
J. Friedel, Dislocations (Pergamon, Oxford, 1964; Mir, Moscow, 1967).
J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1967; Atomizdat, Moscow, 1972).
V. I. Vladimirov, Physical Nature of Metal Fracture (Metallurgiya, Moscow, 1984) [in Russian].
V. N. Gridnev, Yu. A. Meshkov, S. P. Oshkaderov, and V. I. Trefilov, Physical Foundations of Electrothermal Hardening of Steel (Naukova Dumka, Kiev, 1973) [in Russian].
Fracture, Ed. by H. Liebowitz (Academic, New York, 1969–1972; Mir, Moscow, 1973–1976), Vols. 1–7.
A. A. Tutnov, V. M. Dorovskii, and L. A. Elesin, “Amorphization of Crystalline Materials in the Zone before the Tip of a Growing Crack,” in Synergetics and Fatigue Fracture of Metals (Nauka, Moscow, 1989), pp. 45–57.
K. A. Osipov, New Ideas and Facts in Physical Metallurgy (Nauka, Moscow, 1986) [in Russian].
L. S. Vasil’ev, “Phase Equilibria and the Problem of Fracture of Solids,” in Proceedings of International Conference on Modern Problems of Strength, Velikii Novgorod, Russia (NGU, Velikii Novgorod, 2000), Vol. 1, pp. 263–268.
L. S. Vasil’ev, “Pore and Microcrack Nucleation Mechanisms near Dislocation Pileups,” Vestn. Samar. Gos. Tekh. Univ. Ser. Fiz.-mat. Nauki, pp. 106–110 (2004).
L. S. Vasil’ev, “Competition of Sublimation and Local melting in the Growth Kinetics of Fatigue Cracks,” Proceedings of the 28 International Conference on Challenging Problems of Strength, Vitebsk, Russia (Vitebsk, 2004), Vol. 1, pp. 167–173.
S. N. Zhurkov, “Fracture of Materials,” Int. J. Fracture Mech. 1, 311–326 (1965).
V. R. Regel’, A. I. Slutsker, and E. E. Tomashevskii, Kinetic Nature of the Strength of Solids (Nauka, Moscow, 1965) [in Russian].
V. A. Stepanov, Foundations of the Practical Strength of Crystals (Nauka, Moscow, 1974) [in Russian].
V. A. Pavlov, “Amorphization of the Structure of Metals and Alloys with an Extremely High Degree of Plastic Deformation,” Fiz. Met. Metalloved. 59(4), 629–649 (1985).
V. S. Ivanova, “Mechanics and Synergetics of Fatigue Fracture,” Fiz.-Khim. Mekhanika Materialov, No. 1, 62–68 (1986).
V. E. Panin, V. V. Fedorov, R. V. Romashev, et al., “The Phenomenon of Structural-Energetic Analogy between the Processes of Mechanical Fracture and Melting of Metals and Alloys,” in Synergetics and the Fatigue Fracture of Metals (Nauka, Moscow, 1989), pp. 29–44.
V. V. Fedorov, Thermodynamic Aspects of the Strength and Plasticity of Solids (FAN, Tashkent, 1985) [in Russian].