Removal of 1,4-dioxane from landfill leachate by a rotating advanced oxidation contactor equipped with activated carbon/TiO2 composite sheets
Tài liệu tham khảo
Abdelraheem, 2015, Degradation and mineralization of organic UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) using UV-254nm/H2O2, J. Hazard. Mater., 282, 233, 10.1016/j.jhazmat.2014.07.041
Abe, 1999, Distribution of 1,4-dioxane in relation to possible sources in the water environment, Sci. Total Environ., 227, 41, 10.1016/S0048-9697(99)00003-0
Adams, 1994, Oxidation and biodegradability enhancement of 1,4-dioxane using hydrogen peroxide and ozone, Environ. Sci. Technol., 28, 1812, 10.1021/es00060a010
Antonopoulou, 2012, Photocatalytic oxidation of treated municipal wastewaters for the removal of phenolic compounds: optimization and modeling using response surface methodology (RSM) and artificial neural networks (ANNs), J. Chem. Technol. Biotechnol., 87, 1385, 10.1002/jctb.3755
Azizian, 2004, Kinetic models of sorption: a theoretical analysis, J. Colloid Interface Sci., 276, 47, 10.1016/j.jcis.2004.03.048
Bolton, 2001, Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC Technical Report), Pure Appl. Chem., 73, 627, 10.1351/pac200173040627
Coleman, 2007, Degradation of 1,4-dioxane in water using TiO2 based photocatalytic and H2O2/UV processes, J. Hazard. Mater., 146, 496, 10.1016/j.jhazmat.2007.04.049
Dionysiou, 2000, Rotating disk photocatalytic reactor: development, characterization, and evaluation for the destruction of organic pollutants in water, Water Res., 34, 2927, 10.1016/S0043-1354(00)00022-1
Dionysiou, 2000, Continuous-mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench-scale TiO2 rotating disk reactor, Appl. Catal. B Environ., 24, 139, 10.1016/S0926-3373(99)00103-4
Fujiwara, 2008, Investigation of 1,4-dioxane originating from incineration residues produced by incineration of municipal solid waste, Chemosphere, 71, 894, 10.1016/j.chemosphere.2007.11.011
Fukahori, 2014, Modeling of sulfonamide antibiotic removal by TiO2/high-silica zeolite HSZ-385 composite, J. Hazard. Mater., 272, 1, 10.1016/j.jhazmat.2014.02.028
Fukahori, 2003, Photocatalytic decomposition of bisphenol A in water using composite TiO2-zeolite sheets prepared by a papermaking technique, Environ. Sci. Technol., 37, 1048, 10.1021/es0260115
Fukahori, 2015, Sulfonamide antibiotic removal and nitrogen recovery from synthetic urine by the combination of rotating advanced oxidation contactor and methylene urea synthesis process, Water Sci. Technol., 72, 238, 10.2166/wst.2015.182
Fukahori, 2018, Removal mechanism of sulfamethazine and its intermediates from water by a rotating advanced oxidation contactor equipped with TiO2–high-silica zeolite composite sheets, Environ. Sci. Pollut. Res., 25, 29017, 10.1007/s11356-018-2909-y
Fukuhara, 2011, Adsorption of 1,4-dioxane from aqueous solutions onto various activated carbons, J. Water Environ. Technol., 9, 249, 10.2965/jwet.2011.249
Hill, 1997, Photocatalytic degradation of 1,4-dioxane in aqueous solution, J. Photochem. Photobiol. A: Chem., 108, 55, 10.1016/S1010-6030(96)04463-2
Ito, 2014, Adsorptive removal and photocatalytic decomposition of sulfamethazine in secondary effluent using TiO2-zeolite composites, Environ. Sci. Pollut. Res., 21, 834, 10.1007/s11356-013-1707-9
Jia, 2011, UV-TiO2 photocatalytic degradation of landfill leachate, Water Air Soil Pollut., 217, 375, 10.1007/s11270-010-0594-7
Kano, 2009, Carcinogenicity studies of 1,4-dioxane administered in drinking-water to rats and mice for 2 years, Food Chem. Toxicol., 47, 2776, 10.1016/j.fct.2009.08.012
Karges, 2018, 1,4-Dioxane pollution at contaminated groundwater sites in western Germany and its distribution within a TCE plume, Sci. Total Environ., 619–620, 712, 10.1016/j.scitotenv.2017.11.043
Khan, 2014, Kinetic and mechanism investigation on the photochemical degradation of atrazine with activated H2O2, S2O82− and HSO5-, Chem. Eng. J., 252, 393, 10.1016/j.cej.2014.04.104
Kishimoto, 2008, Ozonation combined with electrolysis of 1,4-dioxane using a two-compartment electrolytic flow cell with solid electrolyte, Water Res., 42, 379, 10.1016/j.watres.2007.07.029
Klečka, 1986, Removal of 1,4-dioxane from wastewater, J. Hazard. Mater., 13, 161, 10.1016/0304-3894(86)80016-4
Lesage, 1990, Occurrence and fate of organic solvent residues in anoxic groundwater at the Gloucester landfill, Canada, Environ. Sci. Technol., 24, 559, 10.1021/es00074a016
Lin, 2012, Photocatalytic degradation of methyl orange by a multi-layer rotating disk reactor, Environ. Sci. Pollut. Res., 19, 3743, 10.1007/s11356-012-0765-8
Matsushita, 2015, Decomposition of 1,4-dioxane by vacuum ultraviolet irradiation: study of economic feasibility and by-product formation, Process Saf. Environ. Prot., 94, 528, 10.1016/j.psep.2014.11.005
Nomura, 2016, Adsorptive removal and photocatalytic decomposition of 1,4-dioxane in landfill leachate using activated carbon/TiO2 composites, J. Japan Soc. Civ. Eng. Ser. G (Environ. Res., 72, III_419
Nomura, 2017, Removal behaviors of sulfamonomethoxine and its degradation intermediates in fresh aquaculture wastewater using zeolite/TiO2 composites, J. Hazard. Mater., 340, 427, 10.1016/j.jhazmat.2017.07.034
Paxéus, 1996, Organic pollutants in the effluents of large wastewater treatment plants in Sweden, Water Res., 30, 1115, 10.1016/0043-1354(95)00278-2
Roy, 2005, Chromosome breakage is primarily responsible for the micronuclei induced by 1,4-dioxane in the bone marrow and liver of young CD-1 mice, Mutat. Res. Toxicol. Environ. Mutagen., 586, 28, 10.1016/j.mrgentox.2005.05.007
Umar, 2016, Impact of coagulation as a pre-treatment for UVC/H2O2-biological activated carbon treatment of a municipal wastewater reverse osmosis concentrate, Water Res., 88, 12, 10.1016/j.watres.2015.09.047
USEPA, Toxicological Review of 1,4-dioxane 2013.
Vescovi, 2010, The effect of pH on UV-based advanced oxidation technologies - 1,4-dioxane degradation, J. Hazard. Mater., 182, 75, 10.1016/j.jhazmat.2010.06.001
Wiszniowski, 2004, Solar photocatalytic degradation of humic acids as a model of organic compounds of landfill leachate in pilot-plant experiments: influence of inorganic salts, Appl. Catal. B Environ., 53, 127, 10.1016/j.apcatb.2004.04.017
Wu, 2009, Titanium dioxide-mediated heterogeneous photocatalytic degradation of terbufos: parameter study and reaction pathways, J. Hazard. Mater., 162, 945, 10.1016/j.jhazmat.2008.05.121
Xiang, 2017, Removal of crotamiton from reverse osmosis concentrate by a TiO2/zeolite composite sheet, Appl. Sci. Basel (Basel), 7, 778
Xiang, 2018, Removal of crotamiton and its degradation intermediates from secondary effluent using TiO2–zeolite composites, Water Sci. Technol., 77, 788, 10.2166/wst.2017.578
Xu, 2008, TiO2/Ti rotating disk photoelectrocatalytic (PEC) reactor: a combination of highly effective thin-film PEC and conventional PEC processes on a single electrode, Environ. Sci. Technol., 42, 2612, 10.1021/es702921h
Yamazaki, 2007, Adsorption and photocatalytic degradation of 1,4-dioxane on TiO2, J. Photochem. Photobiol. A: Chem., 185, 150, 10.1016/j.jphotochem.2006.05.024
Yasuhara, 1995, Chemical components in leachates from hazardous wastes landfills in Japan, Toxicol. Environ. Chem., 51, 113, 10.1080/02772249509358229
Zenker, 2003, Occurrence and treatment of 1,4-dioxane in aqueous environments, Environ. Eng. Sci., 20, 423, 10.1089/109287503768335913
Zhang, 2006, Development and modeling of a rotating disc photocatalytic reactor for wastewater treatment, Chem. Eng. J., 121, 125, 10.1016/j.cej.2006.05.011