Preparation and characterization of SnO2 doped TiO2 nanoparticles: Effect of phase changes on the photocatalytic and catalytic activity
Tài liệu tham khảo
Hassan, 2019, Nano-sized mesoporous phosphated tin oxide as an efficient solid acid catalyst, RSC Adv., 9, 810, 10.1039/C8RA08962K
Gawande, 2012, Role of mixed metal oxides in catalysis science—versatile applications in organic synthesis, Catal. Sci. Technol., 2, 1113, 10.1039/c2cy00490a
Hosseini Yeganeh, 2018, Electrophoretic deposition of Sn-doped TiO2 nanoparticles and its optical and photocatalytic properties, J. Mater. Sci. Mater. Electron., 29, 10841, 10.1007/s10854-018-9155-4
El-Dafrawy, 2017, Photodegradation of organic compounds using chromium oxide-doped nano-sulfated zirconia, Res. Chem. Intermed., 43, 6343, 10.1007/s11164-017-2993-5
Mannaa, 2018, Synthesis and bioactivities of H3 PW12 O40/SnO2 -TiO2 nanocomposite, Int. J. Mod. Chem., 10, 69
Zhou, 2008, Effects of calcination temperatures on photocatalytic activity of SnO2/TiO2 composite films prepared by an EPD method, J. Hazard Mater., 154, 1141, 10.1016/j.jhazmat.2007.11.021
Zhang, 2014, Well-dispersed Pt nanocrystals on the heterostructured TiO2/SnO2 nanofibers and the enhanced photocatalytic properties, Appl. Surf. Sci., 319, 21, 10.1016/j.apsusc.2014.07.199
Asuha, 2010, Adsorption of methyl orange and Cr(VI) on mesoporous TiO2 prepared by hydrothermal method, J. Hazard Mater., 181, 204, 10.1016/j.jhazmat.2010.04.117
Kongsong, 2014, Photocatalytic antibacterial performance of glass fibers thin film coated with N-doped SnO2/TiO2, Sci. World J., 2014, 10.1155/2014/869706
Pei, 2015, Adsorption of organic dyes by TiO2 @Yeast-carbon composite microspheres and their in situ regeneration evaluation, J. Nanomater., 2015, 10.1155/2015/498304
Hassan, 2013, Surface acidity and catalytic activity of phosphomolybdic acid/SnO2 catalysts, Int. J. Mod. Chem., 4, 104
Axelsson, 2012, Perspective: jatropha cultivation in southern India: assessing farmers' experiences, Biofuels Bioprod. Biorefining., 6, 246, 10.1002/bbb.1324
Sikong, 2008, Effect of doped SiO2 and calcinations temperature on phase transformation of TiO2 photocatalyst prepared by sol-gel method, Songklanakarin J. Sci. Technol., 30, 385
Bourne, 1970, The structure and properties of acid sites in a mixed-oxide system. I. Synthesis and infrared characterization, J. Phys. Chem., 74, 2197, 10.1021/j100909a028
Ong, 2011, Dye waste treatment, Water, 3, 157, 10.3390/w3010157
ullah, 2017, Sonochemical-driven ultrafast facile synthesis of SnO2 nanoparticles: growth mechanism structural electrical and hydrogen gas sensing properties, Ultrason. Sonochem., 34, 484, 10.1016/j.ultsonch.2016.06.025
Vimonses, 2009, Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials, Chem. Eng. J., 148, 354, 10.1016/j.cej.2008.09.009
Chen, 2009, Properties of sol-gel SnO2/TiO2 electrodes and their photoelectrocatalytic activities under UV and visible light illumination, Electrochim. Acta, 54, 1304, 10.1016/j.electacta.2008.09.009
Hassan, 2016, Photocatalytic degradation of brilliant green dye by SnO2/TiO2 nanocatalysts, Int. J. Nano Mater. Sci., 5, 9
Wan, 2014, Effects of calcination temperatures and additives on the photodegradation of methylene blue by tin dioxide nanocrystals, Mater. Sci. Semicond. Process., 27, 748, 10.1016/j.mssp.2014.07.048
Wetchakun, 2012, Influence of calcination temperature on anatase to rutile phase transformation in TiO2 nanoparticles synthesized by the modified sol–gel method, Mater. Lett., 82, 195, 10.1016/j.matlet.2012.05.092
Yang, 2010, Preparation of highly visible-light active N-doped TiO2 photocatalyst, J. Mater. Chem., 20, 5301, 10.1039/c0jm00376j
Yang, 2011, Lowerature synthesis of visible-light active fluorine/sulfur co-doped mesoporous TiO2 microspheres, Chem. Eur J., 17, 1096, 10.1002/chem.201001676
Li, 2018, TiO2-based photocatalysts prepared by oxidation of TiN nanoparticles and their photocatalytic activities under visible light illumination, J. Mater. Sci. Technol., 34, 969, 10.1016/j.jmst.2017.06.010
Shi, 2014, Highly porous SnO2/TiO2 electrospun nanofibers with high photocatalytic activities, Ceram. Int., 40, 10383, 10.1016/j.ceramint.2014.02.124
Chen, 2013, Synthesis of TiO2 hollow sphere multimer photocatalyst by etching titanium plate and its application to the photocatalytic decomposition of gaseous styrene, Chem. Eng. J., 228, 834, 10.1016/j.cej.2013.05.066
Bagwasi, 2013, Synthesis, characterization and application of bismuth and boron Co-doped TiO2: a visible light active photocatalyst, Chem. Eng. J., 217, 108, 10.1016/j.cej.2012.11.080
Li, 2013, A thermally stable mesoporous ZrO2-CeO2-TiO2 visible light photocatalyst, Chem. Eng. J., 229, 118, 10.1016/j.cej.2013.05.106
Rodríguez-González, 2010, Silver-TiO2 nanocomposites: synthesis and harmful algae bloom UV-photoelimination, Appl. Catal. B Environ., 98, 229, 10.1016/j.apcatb.2010.06.001
Kong, 2010, Rattle-type Au@TiO2 hollow microspheres with multiple nanocores and porous shells and their structurally enhanced catalysis, Mater. Chem. Phys., 123, 421, 10.1016/j.matchemphys.2010.04.034
Wang, 2012, Effects of calcination temperatures on photocatalytic activity of ordered titanate nanoribbon/SnO2 films fabricated during an EPD process, Int. J. Photoenergy, 2012, 1
Gai, 2009, Design of narrow-gap TiO2: a passivated codoping approach for enhanced photoelectrochemical activity, Phys. Rev. Lett., 102, 23, 10.1103/PhysRevLett.102.036402
Colón, 2003, Photocatalytic behaviour of sulphated TiO2 for phenol degradation, Appl. Catal. B Environ., 45, 39, 10.1016/S0926-3373(03)00125-5
Kim, 2011, 9797
Baker, 2009, Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures, Adv. Funct. Mater., 19, 805, 10.1002/adfm.200801173
Huang, 2014, Influence of preparation methods on the structure and catalytic performance of SnO2-doped TiO2photocatalysts, Ceram. Int., 40, 13305, 10.1016/j.ceramint.2014.05.043
Li, 2015, Preparation and characterization of TiO2 based nanosheets for photocatalytic degradation of acetylsalicylic acid: influence of calcination temperature, Chem. Eng. J., 279, 994, 10.1016/j.cej.2015.05.102
Simpraditpan, 2013, Effect of calcination temperature on structural and photocatalyst properties of nanofibers prepared from low-cost natural ilmenite mineral by simple hydrothermal method, Mater. Res. Bull., 48, 3211, 10.1016/j.materresbull.2013.04.083
Jiang, 2014, Effect of calcination temperature on physical parameters and photocatalytic activity of mesoporous titania spheres using chitosan/poly(vinyl alcohol) hydrogel beads as a template, Appl. Surf. Sci., 319, 189, 10.1016/j.apsusc.2014.06.185
Zhang, 2009, Oxygen atom transfer in the photocatalytic oxidation of alcohols by tio2: oxygen isotope studies, Angew. Chem. Int. Ed., 48, 6081, 10.1002/anie.200900322
Wang, 2012, Enhanced photocatalytic activity of TiO2 powders (P25) via calcination treatment, Int. J. Photoenergy, 2012, 10.1155/2012/265760
Hassan, 2018, Structural, photocatalytic, biological and catalytic properties of SnO2/TiO2 nanoparticles, Ceram. Int., 44, 6201, 10.1016/j.ceramint.2018.01.005
Hassan, 2019, Surface acidity, catalytic and photocatalytic activities of new type H3PW12O40/Sn-TiO2 nanoparticles, Colloids Surfaces A Physicochem. Eng. Asp., 577, 147, 10.1016/j.colsurfa.2019.05.070
Mohamed, 2019, Graphene oxide dispersed in N-TiO2 nanoplatelets and their implication in wastewater remediation under visible light illumination: photoelectrocatalytic and photocatalytic properties, J. Environ. Chem. Eng., 7, 102884
Shaterian, 2010, Multicomponent synthesis of 3,5-diaryl-2,6-dicyanoanilines under thermal solvent-free conditions, Monatshefte Für Chemie Chem. Mon., 141, 557, 10.1007/s00706-010-0302-8
Rajitha, 2005, Sulfamic acid: a novel and efficient catalyst for the synthesis of aryl-14H-dibenzo[a.j]xanthenes under conventional heating and microwave irradiation, Tetrahedron Lett., 46, 8691, 10.1016/j.tetlet.2005.10.057
Omri, 2014, Synthesis, surface characterization and Photocatalytic activity of TiO2supported on Almond shell activated carbon, J. Mater. Sci. Technol., 30, 894, 10.1016/j.jmst.2014.04.007
Chen, 2018, Facile fabrication of three-dimensional interconnected nanoporous N-TiO2 for efficient photoelectrochemical water splitting, J. Mater. Sci. Technol., 34, 955, 10.1016/j.jmst.2017.07.010
Zhao, 2011, Ordered mesoporous Pd/SnO2 synthesized by a nanocasting route for high hydrogen sensing performance, Sensor. Actuator. B Chem., 160, 604, 10.1016/j.snb.2011.08.035
Porter, 1999, Effect of calcination on the microstructural characteristics and photoreactivity of Degussa P-25 TiO2, J. Mater. Sci., 34, 1523, 10.1023/A:1004560129347
Chen, 2014, The effect of photonic band gap on the photo-catalytic activity of nc-TiO2/SnO2 photonic crystal composite membranes, Chem. Eng. J., 249, 48, 10.1016/j.cej.2014.03.075
Nirmala, 2012, Photocatalytic activities of electrospun tin oxide doped titanium dioxide nanofibers, Ceram. Int., 38, 4533, 10.1016/j.ceramint.2012.02.030
Wang, 2015, Enhanced simulated sunlight induced photocatalytic activity by pomegranate-like S doped SnO2 @TiO2 spheres, Colloids Surfaces A Physicochem. Eng. Asp., 482, 529, 10.1016/j.colsurfa.2015.06.011
Shaposhnik, 2012, Hydrogen sensors on the basis of SnO2-TiO2 systems, Sensor. Actuator. B Chem., 174, 527, 10.1016/j.snb.2012.05.028
Roh, 2011, The effect of calcination temperature on the performance of Ni/MgO–Al2O3 catalysts for decarboxylation of oleic acid, Catal. Today, 164, 457, 10.1016/j.cattod.2010.10.048
Tangale, 2016, Synthesis of Sn-containing anatase (TiO2) by sol-gel method and their performance in catalytic water splitting under visible light as a function of tin content, Mater. Lett., 171, 50, 10.1016/j.matlet.2016.02.055
Lalitha, 2010, Highly stabilized and finely dispersed Cu2O/TiO2 : a promising visible sensitive photocatalyst for continuous production of hydrogen from glycerol:water mixtures, J. Phys. Chem. C, 114, 22181, 10.1021/jp107405u
Lisachenko, 2004, The interaction of O2 , NO, and N2O with surface defects of dispersed titanium dioxide, Kinet. Catal., 45, 189, 10.1023/B:KICA.0000023790.87804.cc
Colón, 2006, Structural and surface approach to the enhanced photocatalytic activity of sulfated TiO2 photocatalyst, Appl. Catal. B Environ., 63, 45, 10.1016/j.apcatb.2005.09.008
Sarkar, 2014, Optical constants, dispersion energy parameters and dielectric properties of ultra-smooth nanocrystalline BiVO4 thin films prepared by rf-magnetron sputtering, Solid State Sci., 33, 58, 10.1016/j.solidstatesciences.2014.04.008
Zhao, 2016, Efficient removal of dye MB: through the combined action of adsorption and photodegradation from NiFe2O4/Ag3PO4, J. Alloy. Comp., 664, 169, 10.1016/j.jallcom.2016.01.004
Wang, 2015, Correlation investigation on the visible-light-driven photocatalytic activity and coordination structure of rutile Sn-Fe-TiO2 nanocrystallites for methylene blue degradation, Catal. Today, 258, 112, 10.1016/j.cattod.2015.03.022
Chen, 2013, Electrochimica Acta TiO2 nanobelts – effect of calcination temperature on optical , photoelectrochemical and photocatalytic properties, Electrochim. Acta, 111, 284, 10.1016/j.electacta.2013.08.049
Zhuang, 2008, Synthesis , characterization , and visible-light photocatalytic activity of Fe2 O3/SnO2 nanocomposites, Mater. Sci., 26, 517
Cai, 2015, Effect of calcination temperature on structural properties and photocatalytic activity of Mn-C-codoped TiO2, Mater. Res., 19, 401, 10.1590/1980-5373-MR-2015-0381
Zhang, 2009, Preparation of necklace-structured TiO2/SnO2 hybrid nanofibers and their photocatalytic activity, J. Am. Ceram. Soc., 92, 2463, 10.1111/j.1551-2916.2009.03223.x
Kongsong, 2014, Photocatalytic degradation of glyphosate in water by N-doped SnO2/TiO2 thin-film-coated glass fibers, Photochem. Photobiol., 90, 1243, 10.1111/php.12338
El-Hakam, 2018, Synthesis of sulfamic acid supported on Cr-MIL-101 as a heterogeneous acid catalyst and efficient adsorbent for methyl orange dye, RSC Adv., 8, 20517, 10.1039/C8RA02941E
Mondal, 2012, Functionalized mesoporous materials as efficient organocatalysts for the syntheses of xanthenes, J. Mol. Catal. A Chem., 363–364, 254, 10.1016/j.molcata.2012.06.017
Dharma Rao, 2012, An efficient synthesis of naphtha[1,2-e]oxazinone and 14-substituted-14H- dibenzo[a,j]xanthene derivatives promoted by zinc oxide nanoparticle under thermal and solvent-free conditions, Tetrahedron Lett., 53, 2741, 10.1016/j.tetlet.2012.03.085
De Andrade Bartolomeu, 2014, Efficient one-pot synthesis of 14-aryl-14H-dibenzo[a,j]xanthene derivatives promoted by niobium pentachloride, Chem. Pap., 68, 1593, 10.2478/s11696-014-0597-8