Underground structure defect detection and reconstruction using crosshole GPR and Bayesian waveform inversion

Automation in Construction - Tập 68 - Trang 156-169 - 2016
Hui Qin1,2,3, Xiongyao Xie1,2, Jasper A. Vrugt3,4, Kun Zeng1,2, Gai Hong1,2
1Key Laboratory of Geotechnical & Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
2Department of Geotechnical Engineering, College of civil engineering, Tongji University, Shanghai 200092, China
3Department of Civil and Environmental Engineering, University of California Irvine, CA 92697-1075, USA
4Department of Earth Systems Science, University of California Irvine, CA 92697-1075, USA

Tài liệu tham khảo

Daniels, 2004 Szymczyk, 2015, Non-destructive building investigation through analysis of GPR signal by S-transform, Autom. Constr., 55, 35, 10.1016/j.autcon.2015.03.022 Li, 2015, Uncertainty-aware geospatial system for mapping and visualizing underground utilities, Autom. Constr., 55, 105, 10.1016/j.autcon.2015.03.011 Hinnell, 2010, Improved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion, Water Resour. Res., 46, W00D40, 10.1029/2008WR007060 Klotzsche, 2010, Full-waveform inversion of cross-hole ground-penetrating radar data to characterize a gravel aquifer close to the Thur River, Switzerland, Near Surface Geophysics, 8, 635, 10.3997/1873-0604.2010054 Cordua, 2012, Monte Carlo full-waveform inversion of crosshole GPR data using multiple-point geostatistical a priori information, Geophysics, 77, H19, 10.1190/geo2011-0170.1 Harry, 2009 Lakshminarayanan, 1979, Methods of least squares and SIRT in reconstruction, J. Theor. Biol., 76, 267, 10.1016/0022-5193(79)90313-8 Tarantola, 1982, Generalized nonlinear inverse problems solved using the least squares criterion, Rev. Geophys., 20, 219, 10.1029/RG020i002p00219 Trampert, 1990, Simultaneous iterative reconstruction technique: physical interpretation based on the generalized least squares solution, J. Geophys. Res. Solid Earth, 95, 12553, 10.1029/JB095iB08p12553 Slob, 2010, Uncertainty in ground penetrating radar models, 1 Trainor-Guitton, 2011, Stochastic inversion for electromagnetic geophysics: practical challenges and improving convergence efficiency, Geophysics, 76, F373, 10.1190/geo2010-0223.1 Mosegaard, 1995, Monte Carlo sampling of solutions to inverse problems, J. Geophys. Res., 100, 12431, 10.1029/94JB03097 Linde, 2006, Improved hydrogeophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data, Water Resour. Res., 42, W12404, 10.1029/2006WR005131 Bikowski, 2012, Integrated analysis of waveguide dispersed GPR pulses using deterministic and Bayesian inversion methods, Near Surface Geophysics, 10, 641, 10.3997/1873-0604.2012041 Dafflon, 2012, Three-dimensional stochastic estimation of porosity distribution: benefits of using ground-penetrating radar velocity tomograms in simulated-annealing-based or Bayesian sequential simulation approaches, Water Resour. Res., 48, 1, 10.1029/2011WR010916 Laloy, 2012, Mass conservative three-dimensional water tracer distribution from Markov chain Monte Carlo inversion of time-lapse ground-penetrating radar data, Water Resour. Res., 48, 1, 10.1029/2011WR011238 Scholer, 2012, Bayesian Markov-chain-Monte-Carlo inversion or time-lapse crosshole GPR data to characterize the vadose zone at the Arrenaes Site, Denmark, Vadose Zone J., 11, 1, 10.2136/vzj2011.0153 Linde, 2013, Distributed soil moisture from crosshole ground-penetrating radar travel times using stochastic inversion, Vadose Zone J., 12, 1, 10.2136/vzj2012.0101 Lochbuhler, 2015, Summary statistics from training images as prior information in probabilistic inversion, Geophys. J. Int., 201, 157, 10.1093/gji/ggv008 Heimovaara, 2004, Obtaining the spatial distribution of water content along a TDR probe using the SCEM-UA Bayesian inverse modeling scheme, Vadose Zone J., 3, 1128, 10.2136/vzj2004.1128 Dines, 1979, Computerized geophysical tomography, 67, 1065 Williamson, 1993, Resolution limits in ray tomography due to wave behavior: Numerical experiments, Geophysics, 58, 727, 10.1190/1.1443457 Tarantola, 1984, Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49, 1259, 10.1190/1.1441754 Tarantola, 1986, A strategy for nonlinear elastic inversion of seismic reflection data, Geophysics, 51, 1893, 10.1190/1.1442046 Ernst, 2007, Application of a new 2D time-domain full-waveform inversion scheme to crosshole radar data, Geophysics, 72, J53, 10.1190/1.2761848 Ernst, 2007, Full-waveform inversion of crosshole radar data based on 2-D finite-difference time-domain solutions of Maxwell's equations, 45, 2807 Kalogeropoulos, 2011, Chlorides and moisture assessment in concrete by GPR full waveform inversion, 9, 277 Meles, 2012, GPR full-waveform sensitivity and resolution analysis using an FDTD adjoint method, 50, 1881 Klotzsche, 2013, 3-D characterization of high-permeability zones in a gravel aquifer using 2-D crosshole GPR full-waveform inversion and waveguide detection, Geophys. J. Int., 159, 932, 10.1093/gji/ggt275 Kalogeropoulos, 2013, Full-waveform GPR inversion to assess chloride gradients in concrete, NDT & E Int., 57, 74, 10.1016/j.ndteint.2013.03.003 Oberrohrmann, 2013, Optimization of acquisition setup for cross-hole GPR full-waveform inversion using checkerboard analysis, 11, 197 Yang, 2013, Improvements in crosshole GPR full-waveform inversion and application on data measured at the Boise Hydrogeophysics Research Site, J. Appl. Geophys., 99, 114, 10.1016/j.jappgeo.2013.08.007 Busch, 2014, Improved characterization of fine-texture soils using on-ground GPR full-waveform inversion, 52, 3947 Gueting, 2015, Imaging and characterization of facies heterogeneity in an alluvial aquifer using GPR full-waveform inversion and cone penetration tests, J. Hydrol., 524, 680, 10.1016/j.jhydrol.2015.03.030 ter Braak, 2008, Differential evolution Markov chain with snooker updater and fewer chains, Stat. Comput., 18, 435, 10.1007/s11222-008-9104-9 Vrugt, 2008, Inverse modeling of subsurface ow and transport properties: a review with new developments, Vadose Zone J., 7, 843, 10.2136/vzj2007.0078 Vrugt, 2009, Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling, Int. J. Non Linear Sci. Numer. Simul., 10, 271, 10.1515/IJNSNS.2009.10.3.273 Yee, 1966, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, AP-14, 302 Tarantola, 1982, Inverse problems=quest for information, J. Geophys., 50, 159 Rosas-Carbajal, 2014, Two-dimensional probabilistic inversion of plane-wave electromagnetic data: methodology, model constraints and joint inversion with electrical resistivity data, Geophys. J. Int., 193, 1508, 10.1093/gji/ggt482 Metropolis, 1953, Equation of state calculations by fast computing machines, J. Chem. Phys., 21, 1087, 10.1063/1.1699114 ter Braak, 2008, A Markov chain Monte Carlo version of the genetic algorithm differential evolution: easy Bayesian computing for real parameter spaces, Stat. Comput., 16, 239, 10.1007/s11222-006-8769-1 Storn, 1997, Differential evolution — a simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim., 11, 341, 10.1023/A:1008202821328 Price, 2005 Vrugt, 2015, Markov chain Monte Carlo simulation using the DREAM software package: theory, concepts, and MATLAB implementation, Environ. Model Softw. Laloy, 2013, Efficient posterior exploration of a high-dimensional groundwater model from two-stage Markov chain Monte Carlo simulation and polynomial chaos expansion, Water Resour. Res., 49, 2664, 10.1002/wrcr.20226 Taflove, 1995, Computational electrodynamics: the finite-difference time-domain method Holliger, 2002, Numerical modeling of borehole georadar data, Geophysics, 67, 1249, 10.1190/1.1500387 Irving, 2006, Numerical modeling of ground-penetrating radar in 2-D using MATLAB, Comput. Geosci., 39, 1247, 10.1016/j.cageo.2005.11.006 Ernst, 2006, Realistic FDTD modelling of borehole georadar antenna radiation: methodolgy and application, 4, 19 Liu, 2007, FDTD simulations for ground penetrating radar in urban applications, J. Geophys. Eng., 4, 262, 10.1088/1742-2132/4/3/S04 Giannopoulos, 2005, Modelling ground penetrating radar by gprmax, Constr. Build. Mater., 19, 755, 10.1016/j.conbuildmat.2005.06.007 Ahmed, 1974, Discrete cosine transform, 100, 90 Jafarpour, 2009, Transform-domain sparsity regularization for inverse problems in geosciences, Geophysics, 74, R69, 10.1190/1.3157250 Gilbert, 1972, Iterative methods for the three-dimensional reconstruction of an object from projections, J. Therm. Biol., 36, 105, 10.1016/0022-5193(72)90180-4 Ricker, 1953, The form and laws of propagation of seismic wavelets, Geophysics, 18, 10, 10.1190/1.1437843 Jeffreys, 1946, An invariant form for the prior probability in estimation problems, 186, 453 Gelman, 1992, Inference from iterative simulation using multiple sequences, Stat. Sci., 7, 457, 10.1214/ss/1177011136 Vignoli, 2012, Focused inversion of vertical radar profile (VRP) traveltime data, Int. J. Non Linear Sci. Numer. Simul., 77, H9 Sachs, 2011, Trapped victim detection by pseudo-noise radar, 265 Chicarella, 2014, Analyses and measures of GPR signal with superimposed noise, 16, 5387