Asymptotic analysis of two reduction methods for systems of chemical reactions
Tài liệu tham khảo
R. Bender, T. Blasenbrey, U. Maas, Coupling of detailed and ILDM-reduced chemistry with turbulent mixing, in: Proceedings of the Combustion Institute, Vol. 28, Part I, The Combustion Institute, Pittsburgh, 2000, pp. 101–106.
T. Blasenbrey, U. Maas, Intrinsic low-dimensional manifolds of higher hydrocarbons and the hierarchy of chemical kinetics, in: Proceedings of the Combustion Institute, Vol. 28, Part II, The Combustion Institute, Pittsburgh, 2000, pp. 1623–1630.
T. Blasenbrey, D. Schmidt, U. Maas, Intrinsic low-dimensional manifolds of strained and unstrained flames, in: Proceedings of the 16th International Colloquium on the Dynamics of Explosions and Reactive Systems, August 3–8, 1997, University of Mining and Metallurgy, AGH, Cracow, Poland, Wydawn ‘Akapit’, Krakow, 1997, pp. 329–332.
T. Blasenbrey, D. Schmidt, U. Maas, Automatically simplified chemical kinetics and molecular transport and its applications in premixed and non-premixed laminar flame calculations, in: A.R. Burgess, F.L. Dryer (Eds.), Proceedings of the 27th International Symposium on Combustion, The University of Colorado at Boulder, August 2–7, 1998, The Combustion Institute, Pittsburgh, 1998, pp. 505–511.
Brown, 1997, Mechanism reduction via principal component analysis, Int. J. Chem. Kinet., 29, 393, 10.1002/(SICI)1097-4601(1997)29:6<393::AID-KIN1>3.0.CO;2-P
K.W. Chang, F.A. Howes, Nonlinear Singular Perturbation Phenomena: Theory and Applications, Springer, New York, 1984.
Davis, 1999, Geometric investigation of low-dimensional manifolds in systems approaching equilibrium, J. Chem. Phys., 111, 859, 10.1063/1.479372
Davis, 2001, Geometric approach to multiple-time-scale kinetics: a nonlinear master equation describing vibration-to-vibration relaxation, Zeitsch. Phys. Chem., 215, 233, 10.1524/zpch.2001.215.2.233
P. Deuflhard, J. Heroth, Dynamic dimension reduction in ODE models, in: F. Keil, W. Mackens, H. Voss, J. Werner (Eds.), Scientific Computing in Chemical Engineering, Springer, Berlin, 1996, pp. 29–43.
P. Deuflhard, J. Heroth, U. Maas, Towards dynamic dimension reduction in reactive flow problems, in: J. Warnatz, F. Behrendt (Eds.), Proceedings of the International Workshop on Modelling of Chemical Reaction Systems, Heidelberg, Germany, July 24–26, 1996, Springer, Berlin, 1996. CD-ROM, ISBN 3-932217-00-4.
Eggels, 1995, Mathematically reduced reaction mechanisms applied to adiabatic flat hydrogen/air flames, Combust. Flame, 100, 559, 10.1016/0010-2180(94)00108-5
Eggels, 1997, Comparison of conventional and low-dimensional manifold methods to reduce reaction mechanisms, Combust. Sci. Technol., 123, 347, 10.1080/00102209708935634
A. Fehrst, Enzyme Structure and Mechanisms, 2nd Edition, Freeman, New York, 1975.
Fenichel, 1971, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21, 193, 10.1512/iumj.1971.21.21017
Fenichel, 1979, Geometric singular perturbation theory for ordinary differential equations, J. Diff. Eqs., 31, 53, 10.1016/0022-0396(79)90152-9
Fraser, 1988, The steady state and equilibrium approximations: a geometrical picture, J. Chem. Phys., 88, 4732, 10.1063/1.454686
Fraser, 1998, Double perturbation series in the differential equations of enzyme kinetics, J. Chem. Phys., 109, 411, 10.1063/1.476578
G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd Edition, Johns Hopkins University Press, Baltimore, MD, 1996.
D.A. Goussis, S.H. Lam, A study of homogeneous methanol oxidation kinetics using CSP, in: Proceedings of the 24th International Symposium on Combustion, The University of Sydney, Sydney, Australia, July 5–10, 1992, The Combustion Institute, Pittsburgh, 1992, pp. 113–120.
Hadjinicolaou, 1999, Asymptotic solutions of stiff PDEs with the CSP method: the reaction–diffusion equation, SIAM J. Sci. Comput., 20, 781, 10.1137/S1064827596303995
Heineken, 1967, On the mathematical status of the pseudo-steady-state hypothesis of biochemical kinetics, Math. Biosci., 1, 95, 10.1016/0025-5564(67)90029-6
Hessler, 1992, Correlation analysis of complex kinetic systems: a new scheme for utilizing sensitivity coefficients, J. Chem. Phys., 97, 6249, 10.1063/1.463686
M.W. Hirsch, C.C. Pugh, M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583, Springer, New York, 1977.
C.K.R.T. Jones, Geometric singular perturbation theory, in: L. Arnold (Ed.), Dynamical Systems, Montecatini Terme, Lecture Notes in Mathematics, Vol. 1609, Springer, Berlin, 1994, pp. 44–118.
Jones, 1996, Tracking invariant manifolds up to exponentially small error, SIAM J. Math. Anal., 27, 558, 10.1137/S003614109325966X
D.G. Kan, Methods in model reduction, Ph.D. Thesis, UCLA, 1999.
T.J. Kaper, An introduction to geometric methods and dynamical systems theory for singular perturbation problems, in: R.E. O’Malley Jr., J. Cronin (Eds.), Analyzing Multiscale Phenomena Using Singular Perturbation Methods, Proceedings of the Symposium on Applied Mathematics, Vol. 56, American Mathematical Society, Providence, RI, 1999, pp. 85–132.
Kuharsky, 2001, Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition, Biophys. J., 80, 1050, 10.1016/S0006-3495(01)76085-7
Lam, 1993, Using CSP to understand complex chemical kinetics, Combust. Sci. Technol., 89, 375, 10.1080/00102209308924120
S.H. Lam, D.A. Goussis, Understanding complex chemical kinetics with computational singular perturbation, in: Proceedings of the 22nd International Symposium on Combustion, The University of Washington, Seattle, WA, August 14–19, 1988, The Combustion Institute, Pittsburgh, 1988, pp. 931–941.
S.H. Lam, D.A. Goussis, Conventional asymptotics and computational singular perturbation theory for simplified kinetics modeling, in: M. Smooke (Ed.), Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane–Air Flames, Lecture Notes in Physics, Vol. 384, Springer, New York, 1991 (Chapter 10).
Lam, 1994, The CSP method for simplifying kinetics, Int. J. Chem. Kinet., 26, 461, 10.1002/kin.550260408
Levin, 1954, Singular perturbations of nonlinear systems of differential equations and an associated boundary layer equation, J. Rat. Mech. Anal., 3, 247
Levinson, 1950, Perturbations of discontinuous solutions of nonlinear systems of differential equations, Acta Math., 82, 71, 10.1007/BF02398275
G. Li, A.S. Tomlin, H. Rabitz, J. Toth, A general analysis of approximative nonlinear lumping in chemical kinetics, I: Unconstrained lumping; II: Constrained lumping, J. Chem. Phys. 101 (1994) 1172–1187, 1188–1201.
Lu, 2001, Complex CSP for chemistry reduction and analysis, Combust. Flame, 126, 1445, 10.1016/S0010-2180(01)00252-8
Maas, 1995, Coupling of chemical reaction with flow and molecular transport, Appl. Math., 3, 249, 10.21136/AM.1995.134293
Maas, 1998, Efficient calculation of intrinsic low-dimensional manifolds for the simplification of chemical kinetics, Comp. Vis. Sci., 1, 69, 10.1007/s007910050007
U. Maas, Mathematical modeling of the coupling of chemical kinetics with laminar and turbulent transport processes, in: K.J. Bathe (Ed.), Proceedings of the First MIT Conference on Computational Fluid and Solid Mechanics, Vol. 2, Elsevier, Amsterdam, 2001, pp. 1304–1308.
U. Maas, S.B. Pope, Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds, in: Proceedings of the 24th International Symposium on Combustion, The University of Sydney, Sydney, Australia, July 5–10, 1992, The Combustion Institute, Pittsburgh, 1992, pp. 103–112.
Maas, 1992, Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space, Combust. Flame, 88, 239, 10.1016/0010-2180(92)90034-M
U. Maas, S.B. Pope, Laminar flame calculations using simplified chemical kinetics based on intrinsic low-dimensional manifolds, in: U.C. Irvine (Ed.), Proceedings of the 25th International Symposium on Combustion, July 31–August 5, 1994, The Combustion Institute, Pittsburgh, 1994, pp. 1349–1356.
U. Maas, R.W. Dibble, J. Warnatz, E. Zwicker, Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, 2nd Edition, Springer, Berlin, 1999.
Massias, 1999, Global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data, Combust. Theory Model., 3, 233, 10.1088/1364-7830/3/2/002
E.F. Mischenko, Yu.S. Kolesov, A.Yu. Kolesov, N.Kh. Rozov, Asymptotic Methods in Singularly Perturbed Systems, Consultants Bureau, New York, 1994.
D.S. Morgan, Slow manifolds via iteration, Technical Report, Boston University, 1997.
Niemann, 1997, An efficient storage scheme for reduced chemical kinetics based on orthogonal polynomials, J. Eng. Math., 31, 131, 10.1023/A:1004206200192
Nguyen, 1989, Geometrical picture of reaction in enzyme kinetics, J. Chem. Phys., 91, 186, 10.1063/1.457504
Nipp, 1985, Invariant manifolds of singularly perturbed ordinary differential equations, Zeitsch. Angew. Math. Phys., 36, 309, 10.1007/BF00945464
Nipp, 1991, Numerical integration of stiff ODEs of singular perturbation type, Zeitsch. Angew. Math. Phys., 42, 53, 10.1007/BF00962058
Okuda, 1981, A new method of nonlinear analysis for threshold and shaping actions in transient states, Prog. Theoret. Phys., 66, 90, 10.1143/PTP.66.90
Okuda, 1982, Inflector analysis of the second stage of the transient phase for an enzymatic one–substrate reaction, Prog. Theoret. Phys., 68, 1827, 10.1143/PTP.68.1827
R.E. O’Malley Jr., Singular Perturbation Methods for Ordinary Differential Equations, Springer, New York, 1991.
Palsson, 1987, On the dynamics of the irreversible Michaelis–Menten reaction mechanism, Chem. Eng. Sci., 42, 447, 10.1016/0009-2509(87)80007-6
Palsson, 1984, Mathematical modelling of dynamics and control in metabolic networks, I: On Michaelis–Menten kinetics, J. Theoret. Biol., 111, 273, 10.1016/S0022-5193(84)80211-8
N. Peters, B. Rogg, Reduced Kinetic Mechanisms for Applications in Combustion Systems, Springer, Berlin, 1993.
Petzold, 1999, Model reduction for chemical kinetics: an optimization approach, AIChE J., 45, 869, 10.1002/aic.690450418
Rhodes, 1999, Identification of low order manifolds: validating the algorithm of Maas and Pope, Chaos, 9, 108, 10.1063/1.166398
M.R. Roussel, A rigorous approach to steady-state kinetics applied to simple enzyme mechanisms, Ph.D. Thesis, University of Toronto, 1994.
Roussel, 1997, Forced-convergence iterative schemes for the approximation of invariant manifolds, J. Math. Chem., 21, 385, 10.1023/A:1019151225744
Roussel, 1990, Geometry of the steady-state approximation: perturbation and accelerated convergence methods, J. Chem. Phys., 93, 1072, 10.1063/1.459171
Roussel, 1991, On the geometry of transient relaxation, J. Chem. Phys., 94, 7106, 10.1063/1.460194
Roussel, 1991, Accurate steady-state approximations: implications for kinetics experiments and mechanism, J. Phys. Chem., 95, 8762, 10.1021/j100175a064
M.R. Roussel, S.J. Fraser, Global analysis of enzyme inhibition kinetics, J. Phys. Chem. 97 (1993) 8316–8327; Errata 98 (1994) 5174.
Roussel, 2001, Invariant manifold methods for metabolic model reduction, Chaos, 11, 196, 10.1063/1.1349891
Sakamoto, 1990, Invariant manifolds in singular perturbation problems for ordinary differential equations, Proc. R. Soc. Edinburgh A, 116, 45, 10.1017/S0308210500031371
Schauer, 1983, Quasi-steady-state approximation in the mathematical modeling of biochemical reaction networks, Math. Biosci., 65, 155, 10.1016/0025-5564(83)90058-5
Schmidt, 1998, Intrinsic low-dimensional manifolds of strained and unstrained flames, Combust. Theory Model., 2, 135, 10.1088/1364-7830/2/2/002
D. Schmidt, U. Maas, Analysis of the intrinsic low-dimensional manifolds of strained and unstrained flames, in: J. Warnatz, F. Behrendt (Eds.), Proceedings of the International Workshop on Modelling of Chemical Reaction Systems, Heidelberg, Germany, July 24–26, 1996, Springer, Berlin, 1996. CD-ROM, ISBN 3-932217-00-4.
Schmidt, 1996, Simulation of laminar methane–air flames using automatically simplified chemical kinetics, Combust. Sci. Technol., 113, 3, 10.1080/00102209608935484
Segel, 1989, The quasi-steady-state assumption: a case study in perturbation, SIAM Rev., 31, 446, 10.1137/1031091
J.H. Seinfeld, S.N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York, 1998.
Singh, 2001, Viscous detonation in H2–O2–Ar using intrinsic low-dimensional manifolds and wavelet adaptive multilevel representation, Combust. Theory Model., 5, 163, 10.1088/1364-7830/5/2/303
R.T. Skodje, M.J. Davis, Geometrical simplification of complex kinetic systems, J. Phys. Chem. A 105 (2001) 10356–10365.
M.D. Smooke (Ed.), Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane–Air Flames, Lecture Notes in Physics, Vol. 384, Springer, Berlin, 1991.
G.W. Stewart, Introduction to Matrix Computations, Academic Press, New York, 1973.
Stewart, 1976, Algorithm 506 HQR3 and EXCHNG: Fortran subroutines for calculating and ordering the eigenvalues of a real upper Hessenberg matrix [F2], ACM TOMS, 2, 275, 10.1145/355694.355700
Stiefenhofer, 1998, Quasi-steady-state approximation for chemical reaction networks, J. Math. Biol., 36, 593, 10.1007/s002850050116
Tikhonov, 1948, Systems of differential equations containing small parameters multiplying the highest derivatives, Mat. Sb., 31, 575
Turányi, 1994, Parameterization of reaction mechanisms using orthonormal polynomials, Comput. Chem., 18, 45, 10.1016/0097-8485(94)80022-7
Turányi, 1993, On the error of the quasi-steady-state approximation, J. Phys. Chem., 97, 163, 10.1021/j100103a028
Vajda, 1985, Principal component analysis of chemical kinetics, Int. J. Chem. Kinet., 17, 55, 10.1002/kin.550170107
Valorani, 2001, Explicit time-scale splitting algorithm for stiff problems: auto-ignition of gaseous mixtures behind a steady shock, J. Comput. Phys., 169, 44, 10.1006/jcph.2001.6709
S. Wiggins, Normally Hyperbolic Invariant Manifolds in Dynamical Systems, Springer, New York, 1994.
F.A. Williams, Combustion Theory: The Fundamental Theory of Chemically Reacting Flow Systems, 2nd Edition, Benjamin/Cummings, Menlo Park, CA, 1985.
X. Yan, U. Maas, Intrinsic low-dimensional manifolds of heterogeneous combustion processes, in: Proceedings of the Combustion Institute, Vol. 28, Part II, The Combustion Institute, Pittsburgh, 2000, pp. 1615–1621.
Yang, 1998, An investigation of the accuracy of manifold methods and splitting schemes in the computational implementation of combustion chemistry, Combust. Flame, 112, 16, 10.1016/S0010-2180(97)81754-3
Yang, 1998, Treating chemistry in combustion with detailed mechanisms—in situ tabulation in principal directions—premixed combustion, Combust. Flame, 112, 85, 10.1016/S0010-2180(97)81759-2
Yannacopoulos, 1995, The use of algebraic sets in the approximation of inertial manifolds and lumping in chemical kinetic systems, Physica D, 83, 421, 10.1016/0167-2789(94)00244-K
Yannacopoulos, 1996, The error of the quasi-steady-state approximation in spatially distributed systems, Chem. Phys. Lett., 248, 63, 10.1016/0009-2614(95)01270-2