A highly active and stable Ru catalyst for syngas production via glycerol dry reforming: Unraveling the interplay between support material and the active sites

Applied Catalysis A: General - Tập 636 - Trang 118577 - 2022
Mert Ozden1, Zafer Say2,3, Yusuf Kocak2, Kerem Emre Ercan2, Ahsan Jalal2, Emrah Ozensoy2,4, Ahmet K. Avci1
1Department of Chemical Engineering, Bogazici University, Bebek, 34342, Istanbul, Turkey
2Bilkent University, Department of Chemistry, 06800 Ankara, Turkey
3Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06510 Ankara, Turkey
4UNAM-National Nanotechnology Center, Bilkent University, 06800 Ankara, Turkey

Tài liệu tham khảo

Gerpen, 2005, Fuel Process. Technol., 86, 1097, 10.1016/j.fuproc.2004.11.005 Naylor, 2017, Renew. Sustain. Energy Rev., 77, 695, 10.1016/j.rser.2017.04.026 Monteiro, 2018, Renew. Sustain. Energy Rev., 88, 109, 10.1016/j.rser.2018.02.019 Schwengber, 2016, Renew. Sustain. Energy Rev., 58, 259, 10.1016/j.rser.2015.12.279 Ciriminna, 2014, Eur. J. Lipid Sci. Technol., 116, 1432, 10.1002/ejlt.201400229 Lin, 2013, Int. J. Hydrog. Energy, 38, 2678, 10.1016/j.ijhydene.2012.12.079 Silva, 2015, Renew. Sustain. Energy Rev., 42, 1187, 10.1016/j.rser.2014.10.084 Charisiou, 2018, Surf. Coat. Technol., 352, 92, 10.1016/j.surfcoat.2018.08.008 Pakhare, 2014, Chem. Soc. Rev., 43, 7813, 10.1039/C3CS60395D Agrafiotis, 2014, Renew. Sustain. Energy Rev., 29, 656, 10.1016/j.rser.2013.08.050 Freitas, 2014, Int. J. Hydrog. Energy, 39, 17969, 10.1016/j.ijhydene.2014.03.130 Valliyappan, 2008, Bioresour. Technol., 99, 4476, 10.1016/j.biortech.2007.08.069 Trimm, 1999, Catal. Today, 49, 3, 10.1016/S0920-5861(98)00401-5 Rostrup-Nielsen, 1984, Catalytic steam reforming, 1 Rostrup-Nielsen, 2000, Catal. Today, 63, 159, 10.1016/S0920-5861(00)00455-7 Bac, 2020, Sustain. Energy Fuels, 4, 1029, 10.1039/C9SE00967A Shah, 2014, Cat. Rev. Sci. Eng., 56, 476, 10.1080/01614940.2014.946848 Bac, 2020, Int. J. Hydrog. Energy, 45, 34888, 10.1016/j.ijhydene.2019.11.237 Tavanarad, 2018, J. CO2 Util., 24, 298, 10.1016/j.jcou.2018.01.009 Mohd Arif, 2019, Int. J. Hydrog. Energy, 44, 20857, 10.1016/j.ijhydene.2018.06.084 Roslan, 2019, Energy Sources A Recovery Util. Environ. Eff., 1 Lee, 2014, Chem. Eng. J., 255, 245, 10.1016/j.cej.2014.06.044 Lee, 2014, J. Energy Chem., 23, 645, 10.1016/S2095-4956(14)60196-0 Dehghanpoor-Gharashah, 2021, Int. J. Hydrog. Energy, 46, 22454, 10.1016/j.ijhydene.2021.04.072 Siew, 2015, Renew. Energy, 74, 441, 10.1016/j.renene.2014.08.048 Siew, 2015, J. Energy Chem., 24, 366, 10.1016/S2095-4956(15)60324-2 Siew, 2014, J. Energy Chem., 23, 15, 10.1016/S2095-4956(14)60112-1 Harun, 2019, Int. J. Hydrog. Energy, 44, 213, 10.1016/j.ijhydene.2018.03.093 Harun, 2016, Bull. Chem. React. Eng. Catal., 11, 220, 10.9767/bcrec.11.2.553.220-229 Bulutoglu, 2018, Appl. Catal. A, 564, 157, 10.1016/j.apcata.2018.07.027 Bac, 2019, Appl. Catal. B, 256, 10.1016/j.apcatb.2019.117808 Tavanarad, 2018, Catal. Lett., 148, 164, 10.1007/s10562-017-2221-3 Johnson Matthey Plc. 〈http://www.platinum.matthey.com/prices/price-charts〉. (Accessed 1 October 2021. Rostrup-Nielsen, 1993, J. Catal., 144, 38, 10.1006/jcat.1993.1312 van Keulen, 1997, J. Catal., 166, 306, 10.1006/jcat.1997.1539 Therdthianwong, 2008, Fuel Process. Technol., 89, 160, 10.1016/j.fuproc.2007.09.003 Bradford, 1998, J. Catal., 173, 157, 10.1006/jcat.1997.1910 Whang, 2017, Catal. Today, 293–294, 122, 10.1016/j.cattod.2016.12.034 Goula, 2017, Int. J. Hydrog. Energy, 42, 13724, 10.1016/j.ijhydene.2016.11.196 Bai, 2021, Catal. Today, 368, 78, 10.1016/j.cattod.2019.12.033 Guo, 2017, ACS Sustain. Chem. Eng., 5, 2330, 10.1021/acssuschemeng.6b02661 Guo, 2020, Ind. Eng. Chem. Res., 59, 15506, 10.1021/acs.iecr.0c02444 Sun, 2018, Catal. Commun., 104, 53, 10.1016/j.catcom.2017.10.021 Wen, 2015, J. Mater. Chem. A, 3, 13299, 10.1039/C5TA01699A Onsan, 2011, Reactor design for fuel processing, 451 Yu, 2019, Catalysts, 9, 1015, 10.3390/catal9121015 Freitas, 2014, Int. J. Hydrog. Energy, 39, 17969, 10.1016/j.ijhydene.2014.03.130 Jones, 2016, Science, 353, 150, 10.1126/science.aaf8800 Hansen, 2013, Acc. Chem. Res., 46, 1720, 10.1021/ar3002427 Goodman, 1995, Chem. Rev., 95, 523, 10.1021/cr00035a004 Haruta, 2002, CATTECH, 6, 102, 10.1023/A:1020181423055 Campbell, 2012, Nat. Chem., 4, 597, 10.1038/nchem.1412 Rodriguez-Blanco, 2011, Nanoscale, 3, 265, 10.1039/C0NR00589D Andersen, 1991, Acta Chem. Scand., 45, 1018, 10.3891/acta.chem.scand.45-1018 Farhadi Khouzani, 2015, CrystEngComm, 17, 4842, 10.1039/C5CE00720H Verykios, 2003, Energy, 28, 1045 Irusta, 2004, Mater. Chem. Phys., 86, 440, 10.1016/j.matchemphys.2004.04.017 Levan, 1993, J. Catal., 142, 18, 10.1006/jcat.1993.1185 Demény, 2016, Sci. Rep., 6, 39602, 10.1038/srep39602 Henderson, 1985, J. Phys. Chem., 89, 1417, 10.1021/j100254a023 Prairie, 1991, J. Catal., 129, 130, 10.1016/0021-9517(91)90017-X Solymosi, 1981, J. Chem. Soc. Faraday Trans., 77, 1003, 10.1039/f19817701003 Gallei, 1976, J. Colloid Interface Sci., 55, 415, 10.1016/0021-9797(76)90051-5 Westermann, 2015, Appl. Catal. B, 120, 10.1016/j.apcatb.2015.02.026 Osorio-Vargas, 2015, Appl. Catal. A, 505, 159, 10.1016/j.apcata.2015.07.037 Jayakumar, 2011, Mater. Sci. Eng. B, 176, 894, 10.1016/j.mseb.2011.05.013 Feinberg, 1981, J. Phys. Chem. Solids, 42, 513, 10.1016/0022-3697(81)90032-9 Chandradass, 2011, J. Exp. Nanosci., 6, 38, 10.1080/17458081003762813 Chen, 2005, J. Cryst. Growth, 282, 498, 10.1016/j.jcrysgro.2005.05.017 Kogler, 2014, J. Phys. Chem. C, 118, 8435, 10.1021/jp5008472 Park, 2011, Korean J. Chem. Eng., 28, 402, 10.1007/s11814-010-0356-7 Thang, 2018, ChemCatChem, 10, 2634, 10.1002/cctc.201800246 Mihaylov, 2011, J. Phys. Chem. C., 115, 13860, 10.1021/jp203944c Guglielminotti, 2000, J. Catal., 192, 149, 10.1006/jcat.2000.2835 Hadjiivanov, 1998, J. Catal., 176, 415, 10.1006/jcat.1998.2038 Komanoya, 2017, J. Am. Chem. Soc., 139, 11493, 10.1021/jacs.7b04481 Su, 2007, J. Am. Chem. Soc., 129, 14213, 10.1021/ja072697v Sarma, 2020, J. Am. Chem. Soc., 142, 14890, 10.1021/jacs.0c03627 Guglielminotti, 2000, J. Catal., 192, 149, 10.1006/jcat.2000.2835 Chin, 2006, J. Phys. Chem. B, 110, 871, 10.1021/jp053908q Hadjiivanov, 1998, J. Catal., 176, 415, 10.1006/jcat.1998.2038 Kostov, 1992, Surf. Sci., 278, 62, 10.1016/0039-6028(92)90584-S Gao, 2012, Phys. Chem. Chem. Phys., 14, 6688, 10.1039/c2cp40121e Tauster, 1987, Acc. Chem. Res., 20, 389, 10.1021/ar00143a001 Ftouni, 2016, ACS Catal., 6, 5462, 10.1021/acscatal.6b00730 Beck, 2020, Nat. Commun., 11, 3220, 10.1038/s41467-020-17070-2 Zhang, 2016, Nano Lett., 16, 4528, 10.1021/acs.nanolett.6b01769 Ganduglia-Pirovano, 2007, Surf. Sci. Rep., 62, 219, 10.1016/j.surfrep.2007.03.002 Fujita, 1992, J. Catal., 134, 220, 10.1016/0021-9517(92)90223-5 Ginés, 1997, Appl. Catal. A, 154, 155, 10.1016/S0926-860X(96)00369-9 Roy, 2018, ACS Energy Lett., 3, 1938, 10.1021/acsenergylett.8b00740 Conner, 1995, Chem. Rev., 95, 759, 10.1021/cr00035a014 Righi, 2019, J. Phys. Chem. C, 123, 9875, 10.1021/acs.jpcc.9b00609