Growing Chlorella vulgaris on thermophilic anaerobic digestion swine manure for nutrient removal and biomass production

Elsevier BV - Tập 243 - Trang 417-425 - 2017
Xiang-Yuan Deng1,2, Kun Gao1,2, Ren-Chuan Zhang2, Min Addy2, Qian Lu2, Hong-Yan Ren2,3, Paul Chen2, Yu-Huan Liu4, Roger Ruan2,4
1College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
2Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, United States
3School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, People’s Republic of China
4The Engineering Research Center for Biomass Conversion, Ministry of Education, People’s Republic of China, Nanchang University, Nanchang 330047, People’s Republic of China

Tài liệu tham khảo

Abou-Shanab, 2013, Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production, J. Environ. Manage., 115, 257, 10.1016/j.jenvman.2012.11.022 Alyabyev, 2007, The effect of changes in salinity on the energy yielding processes of Chlorella vulgaris and Dunaliella maritima cells, Thermochim. Acta, 458, 65, 10.1016/j.tca.2007.03.003 Ben-Amotz, 1985, Chemical profile of selected species of microalgae with emphasis on lipids, J. Phycol., 21, 72, 10.1111/j.0022-3646.1985.00072.x BenMoussa-Dahmen, 2016, Salinity stress increases lipid, secondary metabolites and enzyme activity in Amphora subtropica and Dunaliella sp. for biodiesel production, Bioresour. Technol., 218, 816, 10.1016/j.biortech.2016.07.022 Cai, 2013, Nutrient recovery from wastewater streams by microalgae: status and prospects, Renew. Sust. Energ. Rev., 19, 360, 10.1016/j.rser.2012.11.030 Dere, 1998, Spectrophotometric determination of chlorophyll-a, b and total carotenoid contents of some algae species using different solvents, Turk. J. Bot., 22, 13 González, 2008, Microalgae-based processes for the biodegradation of pretreated piggery wastewaters, Appl. Microbiol. Biotechnol., 80, 891, 10.1007/s00253-008-1571-6 González, 2008, Efficient nutrient removal from swine manure in a tubular biofilm photo-bioreactor using algae-bacteria consortia, Water Sci. Technol., 58, 95, 10.2166/wst.2008.655 Hach, 2008 Harris, 1989 Hjorth, 2008, Flocculation, coagulation, and precipitation of manure affecting three separation techniques, Bioresour. Technol., 99, 8598, 10.1016/j.biortech.2008.04.009 Hu, 2012, Enhanced mixotrophic growth of microalga Chlorella sp. on pretreated swine manure for simultaneous biofuel feedstock production and nutrient removal, Bioresour. Technol., 126, 71, 10.1016/j.biortech.2012.09.031 Hu, 2013, Development of an effective acidogenically digested swine manure-based algal system for improved wastewater treatment and biofuel and feed production, Appl. Energy, 107, 255, 10.1016/j.apenergy.2013.02.033 Ji, 2014, Biomass production and nutrients removal by a new microalgae strain Desmodesmus sp. in anaerobic digestion wastewater, Bioresour. Technol., 161, 200, 10.1016/j.biortech.2014.03.034 Liao, 1995, Removal of nitrogen from swine manure wastewaters by ammonia stripping, Bioresour. Technol., 54, 17, 10.1016/0960-8524(95)00105-0 Lowrey, 2015, Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges—a critical review, J. Appl. Phycol., 27, 1485, 10.1007/s10811-014-0459-3 Lu, 2015, Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production, Bioresour. Technol., 198, 189, 10.1016/j.biortech.2015.08.133 Luo, 2016, Nutrient removal and lipid production by Coelastrella sp. in anaerobically and aerobically treated swine wastewater, Bioresour. Technol., 216, 135, 10.1016/j.biortech.2016.05.059 Ma, 2016, Cultivation of Chlorella vulgaris in wastewater with waste glycerol: strategies for improving nutrients removal and enhancing lipid production, Bioresour. Technol., 207, 252, 10.1016/j.biortech.2016.02.013 Ma, 2014, Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system, Bioresour. Technol., 167, 8, 10.1016/j.biortech.2014.05.087 Maruyama, 1997, Application of unicellular algae Chlorella vulgaris for the mass-culture of marine rotifer Brachionus, Hydrobiologia, 358, 133, 10.1023/A:1003116003184 Min, 2014, Swine manure-based pilot-scale algal biomass production system for fuel production and wastewater treatment—a case study, Appl. Biochem. Biotechnol., 172, 1390, 10.1007/s12010-013-0603-6 Molobela, 2010, Protease and amylase enzymes for biofilm removal and degradation of extracellular polymeric substances (EPS) produced by Pseudomonas fluorescens bacteria, Afr. J. Microbiol. Res., 4, 1515 Nam, 2017, Cultivation of Chlorella vulgaris with swine wastewater and potential for algal biodiesel production, J. Appl. Phycol., 29, 1171, 10.1007/s10811-016-0987-0 Park, 2010, Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp, Bioresour. Technol., 101, 8649, 10.1016/j.biortech.2010.06.142 Park, 2008, Growth promotion of Chlorella ellipsoidea by co-inoculation with Brevundimonas sp. isolated from the microalga, Hydrobiologia, 598, 219, 10.1007/s10750-007-9152-8 Priyadarshani, 2012, Commercial and industrial applications of micro algae—a review, J. Algal Biomass Utln., 3, 89 Safi, 2013, Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors, J. Appl. Phycol., 25, 523, 10.1007/s10811-012-9886-1 Seyfabadi, 2011, Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes, J. Appl. Phycol., 23, 721, 10.1007/s10811-010-9569-8 Sheng, 2010, Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review, Biotechnol. Adv., 28, 882, 10.1016/j.biotechadv.2010.08.001 Singh, 2011, Microalgal system for treatment of effluent from poultry litter anaerobic digestion, Bioresour. Technol., 102, 10841, 10.1016/j.biortech.2011.09.037 Sooknah, 2004, Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater, Ecol. Eng., 22, 27, 10.1016/j.ecoleng.2004.01.004 Tan, 2014, Chlorella pyrenoidosa cultivation using anaerobic digested starch processing wastewater in an airlift circulation photobioreactor, Bioresour. Technol., 170, 538, 10.1016/j.biortech.2014.07.086 Wang, 2010, Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp, Bioresour. Technol., 101, 2623, 10.1016/j.biortech.2009.10.062 Wang, 2013, A flexible culture process for production of the green microalga Scenedesmus dimorphus rich in protein, carbohydrate or lipid, Bioresour. Technol., 129, 289, 10.1016/j.biortech.2012.10.062 Watanabe, 2005, Symbiotic association in Chlorella culture, FEMS Microbiol. Ecol., 51, 187, 10.1016/j.femsec.2004.08.004 White, 2013, The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae cultures, J. Appl. Phycol., 25, 153, 10.1007/s10811-012-9849-6 Xu, 2006, High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters, J. Biotechnol., 126, 499, 10.1016/j.jbiotec.2006.05.002 Zhang, 2012, The effect of bacterial contamination on the heterotrophic cultivation of Chlorella pyrenoidosa in wastewater from the production of soybean products, Water Res., 46, 5509, 10.1016/j.watres.2012.07.025 Zhou, 2014, Environment-enhancing algal biofuel production using wastewaters, Renew. Sust. Energ. Rev., 36, 256, 10.1016/j.rser.2014.04.073 Zhou, 2011, Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production, Bioresour. Technol., 102, 6909, 10.1016/j.biortech.2011.04.038 Zhou, 2012, A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation, Bioresour. Technol., 110, 448, 10.1016/j.biortech.2012.01.063