Growing Chlorella vulgaris on thermophilic anaerobic digestion swine manure for nutrient removal and biomass production
Tài liệu tham khảo
Abou-Shanab, 2013, Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production, J. Environ. Manage., 115, 257, 10.1016/j.jenvman.2012.11.022
Alyabyev, 2007, The effect of changes in salinity on the energy yielding processes of Chlorella vulgaris and Dunaliella maritima cells, Thermochim. Acta, 458, 65, 10.1016/j.tca.2007.03.003
Ben-Amotz, 1985, Chemical profile of selected species of microalgae with emphasis on lipids, J. Phycol., 21, 72, 10.1111/j.0022-3646.1985.00072.x
BenMoussa-Dahmen, 2016, Salinity stress increases lipid, secondary metabolites and enzyme activity in Amphora subtropica and Dunaliella sp. for biodiesel production, Bioresour. Technol., 218, 816, 10.1016/j.biortech.2016.07.022
Cai, 2013, Nutrient recovery from wastewater streams by microalgae: status and prospects, Renew. Sust. Energ. Rev., 19, 360, 10.1016/j.rser.2012.11.030
Dere, 1998, Spectrophotometric determination of chlorophyll-a, b and total carotenoid contents of some algae species using different solvents, Turk. J. Bot., 22, 13
González, 2008, Microalgae-based processes for the biodegradation of pretreated piggery wastewaters, Appl. Microbiol. Biotechnol., 80, 891, 10.1007/s00253-008-1571-6
González, 2008, Efficient nutrient removal from swine manure in a tubular biofilm photo-bioreactor using algae-bacteria consortia, Water Sci. Technol., 58, 95, 10.2166/wst.2008.655
Hach, 2008
Harris, 1989
Hjorth, 2008, Flocculation, coagulation, and precipitation of manure affecting three separation techniques, Bioresour. Technol., 99, 8598, 10.1016/j.biortech.2008.04.009
Hu, 2012, Enhanced mixotrophic growth of microalga Chlorella sp. on pretreated swine manure for simultaneous biofuel feedstock production and nutrient removal, Bioresour. Technol., 126, 71, 10.1016/j.biortech.2012.09.031
Hu, 2013, Development of an effective acidogenically digested swine manure-based algal system for improved wastewater treatment and biofuel and feed production, Appl. Energy, 107, 255, 10.1016/j.apenergy.2013.02.033
Ji, 2014, Biomass production and nutrients removal by a new microalgae strain Desmodesmus sp. in anaerobic digestion wastewater, Bioresour. Technol., 161, 200, 10.1016/j.biortech.2014.03.034
Liao, 1995, Removal of nitrogen from swine manure wastewaters by ammonia stripping, Bioresour. Technol., 54, 17, 10.1016/0960-8524(95)00105-0
Lowrey, 2015, Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges—a critical review, J. Appl. Phycol., 27, 1485, 10.1007/s10811-014-0459-3
Lu, 2015, Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production, Bioresour. Technol., 198, 189, 10.1016/j.biortech.2015.08.133
Luo, 2016, Nutrient removal and lipid production by Coelastrella sp. in anaerobically and aerobically treated swine wastewater, Bioresour. Technol., 216, 135, 10.1016/j.biortech.2016.05.059
Ma, 2016, Cultivation of Chlorella vulgaris in wastewater with waste glycerol: strategies for improving nutrients removal and enhancing lipid production, Bioresour. Technol., 207, 252, 10.1016/j.biortech.2016.02.013
Ma, 2014, Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system, Bioresour. Technol., 167, 8, 10.1016/j.biortech.2014.05.087
Maruyama, 1997, Application of unicellular algae Chlorella vulgaris for the mass-culture of marine rotifer Brachionus, Hydrobiologia, 358, 133, 10.1023/A:1003116003184
Min, 2014, Swine manure-based pilot-scale algal biomass production system for fuel production and wastewater treatment—a case study, Appl. Biochem. Biotechnol., 172, 1390, 10.1007/s12010-013-0603-6
Molobela, 2010, Protease and amylase enzymes for biofilm removal and degradation of extracellular polymeric substances (EPS) produced by Pseudomonas fluorescens bacteria, Afr. J. Microbiol. Res., 4, 1515
Nam, 2017, Cultivation of Chlorella vulgaris with swine wastewater and potential for algal biodiesel production, J. Appl. Phycol., 29, 1171, 10.1007/s10811-016-0987-0
Park, 2010, Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp, Bioresour. Technol., 101, 8649, 10.1016/j.biortech.2010.06.142
Park, 2008, Growth promotion of Chlorella ellipsoidea by co-inoculation with Brevundimonas sp. isolated from the microalga, Hydrobiologia, 598, 219, 10.1007/s10750-007-9152-8
Priyadarshani, 2012, Commercial and industrial applications of micro algae—a review, J. Algal Biomass Utln., 3, 89
Safi, 2013, Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors, J. Appl. Phycol., 25, 523, 10.1007/s10811-012-9886-1
Seyfabadi, 2011, Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes, J. Appl. Phycol., 23, 721, 10.1007/s10811-010-9569-8
Sheng, 2010, Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review, Biotechnol. Adv., 28, 882, 10.1016/j.biotechadv.2010.08.001
Singh, 2011, Microalgal system for treatment of effluent from poultry litter anaerobic digestion, Bioresour. Technol., 102, 10841, 10.1016/j.biortech.2011.09.037
Sooknah, 2004, Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater, Ecol. Eng., 22, 27, 10.1016/j.ecoleng.2004.01.004
Tan, 2014, Chlorella pyrenoidosa cultivation using anaerobic digested starch processing wastewater in an airlift circulation photobioreactor, Bioresour. Technol., 170, 538, 10.1016/j.biortech.2014.07.086
Wang, 2010, Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp, Bioresour. Technol., 101, 2623, 10.1016/j.biortech.2009.10.062
Wang, 2013, A flexible culture process for production of the green microalga Scenedesmus dimorphus rich in protein, carbohydrate or lipid, Bioresour. Technol., 129, 289, 10.1016/j.biortech.2012.10.062
Watanabe, 2005, Symbiotic association in Chlorella culture, FEMS Microbiol. Ecol., 51, 187, 10.1016/j.femsec.2004.08.004
White, 2013, The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae cultures, J. Appl. Phycol., 25, 153, 10.1007/s10811-012-9849-6
Xu, 2006, High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters, J. Biotechnol., 126, 499, 10.1016/j.jbiotec.2006.05.002
Zhang, 2012, The effect of bacterial contamination on the heterotrophic cultivation of Chlorella pyrenoidosa in wastewater from the production of soybean products, Water Res., 46, 5509, 10.1016/j.watres.2012.07.025
Zhou, 2014, Environment-enhancing algal biofuel production using wastewaters, Renew. Sust. Energ. Rev., 36, 256, 10.1016/j.rser.2014.04.073
Zhou, 2011, Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production, Bioresour. Technol., 102, 6909, 10.1016/j.biortech.2011.04.038
Zhou, 2012, A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation, Bioresour. Technol., 110, 448, 10.1016/j.biortech.2012.01.063