Advances in anti-viral immune defence: revealing the importance of the IFN JAK/STAT pathway

Cellular and Molecular Life Sciences - Tập 74 - Trang 2525-2535 - 2017
Nicola Raftery1,2, Nigel J. Stevenson2
1School of Medicine, Trinity College Dublin, Dublin 2, Ireland
2School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland

Tóm tắt

Interferon-alpha (IFN-α) is a potent anti-viral cytokine, critical to the host immune response against viruses. IFN-α is first produced upon viral detection by pathogen recognition receptors. Following its expression, IFN-α embarks upon a complex downstream signalling cascade called the JAK/STAT pathway. This signalling pathway results in the expression of hundreds of effector genes known as interferon stimulated genes (ISGs). These genes are the basis for an elaborate effector mechanism and ultimately, the clearance of viral infection. ISGs mark an elegant mechanism of anti-viral host defence that warrants renewed research focus in our global efforts to treat existing and emerging viruses. By understanding the mechanistic role of individual ISGs we anticipate the discovery of a new “treasure trove” of anti-viral mediators that may pave the way for more effective, targeted and less toxic anti-viral therapies. Therefore, with the aim of highlighting the value of the innate type 1 IFN response in our battle against viral infection, this review outlines both historic and recent advances in understanding the IFN-α JAK/STAT pathway, with a focus on new research discoveries relating to specific ISGs and their potential role in curing existing and future emergent viral infections.

Tài liệu tham khảo

Isaacs A, Lindenmann J (1957) Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 147:258–267 van Pesch V, Lanaya H, Renauld J-C, Michiels T (2004) Characterization of the murine alpha interferon gene family. J Virol 78:8219–8228. doi:10.1128/JVI.78.15.8219-8228.2004 Uzé G, Schreiber G, Piehler J, Pellegrini S (2007) The receptor of the type I interferon family. In: Pitha PM (ed) Interferon 50th anniv. Springer, Berlin, pp 71–95 Müller U, Steinhoff U, Reis LF et al (1994) Functional role of type I and type II interferons in antiviral defense. Science 264:1918–1921 Jouanguy E, Zhang S-Y, Chapgier A et al (2007) Human primary immunodeficiencies of type I interferons. Biochimie 89:878–883. doi:10.1016/j.biochi.2007.04.016 Simmons DP, Wearsch PA, Canaday DH et al (2012) Type I interferon drives a distinctive dendritic cell maturation phenotype that allows continued class II MHC synthesis and antigen processing. J Immunol Baltim Md 188:3116–3126. doi:10.4049/jimmunol.1101313 Cella M, Salio M, Sakakibara Y et al (1999) Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J Exp Med 189:821–829 Castelli JC, Hassel BA, Wood KA et al (1997) A study of the interferon antiviral mechanism: apoptosis activation by the 2-5A system. J Exp Med 186:967–972 Garland Science—Book: Janeway’s Immunobiology + 7. http://www.garlandscience.com/product/isbn/0815341237. Accessed 7 Sept 2016 Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA (2011) Pattern recognition receptors and the innate immune response to viral infection. Viruses 3:920–940. doi:10.3390/v3060920 Xagorari A, Chlichlia K (2008) Toll-like receptors and viruses: induction of innate antiviral immune responses. Open Microbiol J 2:49–59. doi:10.2174/1874285800802010049 Grandvaux N, Servant MJ, tenOever B et al (2002) Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes. J Virol 76:5532–5539 Tamura T, Yanai H, Savitsky D, Taniguchi T (2008) The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 26:535–584. doi:10.1146/annurev.immunol.26.021607.090400 Gack MU (2014) Mechanisms of RIG-I-like receptor activation and manipulation by viral pathogens. J Virol 88:5213–5216. doi:10.1128/JVI.03370-13 Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5:375–386. doi:10.1038/nri1604 Levy DE, Marié I, Smith E, Prakash A (2002) Enhancement and diversification of IFN induction by IRF-7-mediated positive feedback. J Interferon Cytokine Res Off J Int Soc Interferon Cytokine Res 22:87–93. doi:10.1089/107999002753452692 Hertzog PJ, Williams BRG (2013) Fine tuning type I interferon responses. Cytokine Growth Factor Rev 24:217–225. doi:10.1016/j.cytogfr.2013.04.002 Aaronson DS, Horvath CM (2002) A road map for those who don’t know JAK-STAT. Science 296:1653–1655. doi:10.1126/science.1071545 Levy DE, Darnell JE (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3:651–662. doi:10.1038/nrm909 Decker T, Müller M, Stockinger S (2005) The yin and yang of type I interferon activity in bacterial infection. Nat Rev Immunol 5:675–687. doi:10.1038/nri1684 Brooks AJ, Dai W, O’Mara ML et al (2014) Mechanism of activation of protein kinase JAK2 by the growth hormone receptor. Science 344:1249783. doi:10.1126/science.1249783 Schneider WM, Chevillotte MD, Rice CM (2014) Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol 32:513–545. doi:10.1146/annurev-immunol-032713-120231 de Veer MJ, Holko M, Frevel M et al (2001) Functional classification of interferon-stimulated genes identified using microarrays. J Leukoc Biol 69:912–920 Schoggins JW, Rice CM (2011) Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol 1:519–525. doi:10.1016/j.coviro.2011.10.008 Gao S, von der Malsburg A, Paeschke S et al (2010) Structural basis of oligomerization in the stalk region of dynamin-like MxA. Nature 465:502–506. doi:10.1038/nature08972 Xiao H, Killip MJ, Staeheli P et al (2013) The human interferon-induced MxA protein inhibits early stages of influenza A virus infection by retaining the incoming viral genome in the cytoplasm. J Virol. doi:10.1128/JVI.02220-13 Klockow B, Tichelaar W, Madden DR et al (2002) The dynamin A ring complex: molecular organization and nucleotide-dependent conformational changes. EMBO J 21:240–250. doi:10.1093/emboj/21.3.240 Haller O, Kochs G (2011) Human MxA protein: an interferon-induced dynamin-like GTPase with broad antiviral activity. J Interferon Cytokine Res Off J Int Soc Interferon Cytokine Res 31:79–87. doi:10.1089/jir.2010.0076 Kane M, Yadav SS, Bitzegeio J et al (2013) MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature 502:563–566. doi:10.1038/nature12653 Goujon C, Moncorgé O, Bauby H et al (2013) Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature 502:559–562. doi:10.1038/nature12542 Brass AL, Huang I-C, Benita Y et al (2009) The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139:1243–1254. doi:10.1016/j.cell.2009.12.017 Wilkins C, Woodward J, Lau DT-Y et al (2013) IFITM1 is a tight junction protein that inhibits hepatitis C virus entry. Hepatol Baltim Md 57:461–469. doi:10.1002/hep.26066 Lu J, Pan Q, Rong L et al (2011) The IFITM proteins inhibit HIV-1 infection. J Virol 85:2126–2137. doi:10.1128/JVI.01531-10 Feeley EM, Sims JS, John SP et al (2011) IFITM3 inhibits influenza A virus infection by preventing cytosolic entry. PLoS Pathog 7:e1002337. doi:10.1371/journal.ppat.1002337 Everitt AR, Clare S, Pertel T et al (2012) IFITM3 restricts the morbidity and mortality associated with influenza. Nature 484:519–523. doi:10.1038/nature10921 Wang Y, Pan Q, Ding S et al (2017) The V3-loop of HIV-1 Env determines viral susceptibility to IFITM3 impairment of viral infectivity. J Virol. doi:10.1128/JVI.02441-16 Ozato K, Shin D-M, Chang T-H, Morse HC (2008) TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol 8:849–860. doi:10.1038/nri2413 Stremlau M, Owens CM, Perron MJ et al (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427:848–853. doi:10.1038/nature02343 Diaz-Griffero F (2011) Caging the beast: TRIM5α binding to the HIV-1 core. Viruses 3:423–428. doi:10.3390/v3050423 Ganser-Pornillos BK, Chandrasekaran V, Pornillos O et al (2011) Hexagonal assembly of a restricting TRIM5alpha protein. Proc Natl Acad Sci USA 108:534–539. doi:10.1073/pnas.1013426108 Towers GJ (2007) The control of viral infection by tripartite motif proteins and cyclophilin A. Retrovirology 4:40. doi:10.1186/1742-4690-4-40 Rold CJ, Aiken C (2008) Proteasomal degradation of TRIM5α during retrovirus restriction. PLoS Pathog 4:e1000074. doi:10.1371/journal.ppat.1000074 Singh R, Gaiha G, Werner L et al (2011) Association of TRIM22 with the type 1 interferon response and viral control during primary HIV-1 infection. J Virol 85:208–216. doi:10.1128/JVI.01810-10 Hattlmann CJ, Kelly JN, Barr SD (2012) TRIM22: a diverse and dynamic antiviral protein. Mol Biol Int 2012:e153415. doi:10.1155/2012/153415 Gao B, Duan Z, Xu W, Xiong S (2009) Tripartite motif-containing 22 inhibits the activity of hepatitis B virus core promoter, which is dependent on nuclear-located RING domain. Hepatol Baltim Md 50:424–433. doi:10.1002/hep.23011 Di Pietro A, Kajaste-Rudnitski A, Oteiza A et al (2013) TRIM22 inhibits influenza A virus infection by targeting the viral nucleoprotein for degradation. J Virol 87:4523–4533. doi:10.1128/JVI.02548-12 Zhao C, Collins M, Hsiang T-Y, Krug RM (2013) Interferon-induced ISG15 pathway: an ongoing virus–host battle. Trends Microbiol 21:181–186. doi:10.1016/j.tim.2013.01.005 Shi H-X, Yang K, Liu X et al (2010) Positive regulation of interferon regulatory factor 3 activation by Herc5 via ISG15 modification. Mol Cell Biol 30:2424–2436. doi:10.1128/MCB.01466-09 Lenschow DJ, Lai C, Frias-Staheli N et al (2007) IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc Natl Acad Sci USA 104:1371–1376. doi:10.1073/pnas.0607038104 Bogunovic D, Byun M, Durfee LA et al (2012) Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. Science 337:1684–1688. doi:10.1126/science.1224026 Speer SD, Li Z, Buta S et al (2016) ISG15 deficiency and increased viral resistance in humans but not mice. Nat Commun. doi:10.1038/ncomms11496 Hovanessian AG, Justesen J (2007) The human 2′-5′oligoadenylate synthetase family: unique interferon-inducible enzymes catalyzing 2′-5′ instead of 3′-5′ phosphodiester bond formation. Biochimie 89:779–788. doi:10.1016/j.biochi.2007.02.003 Clemens MJ, Vaquero CM (1978) Inhibition of protein synthesis by double-stranded RNA in reticulocyte lysates: evidence for activation of an endoribonuclease. Biochem Biophys Res Commun 83:59–68 Zhou A, Paranjape J, Brown TL et al (1997) Interferon action and apoptosis are defective in mice devoid of 2′,5′-oligoadenylate-dependent RNase L. EMBO J 16:6355–6363. doi:10.1093/emboj/16.21.6355 Bonnevie-Nielsen V, Field LL, Lu S et al (2005) Variation in antiviral 2′,5′-oligoadenylate synthetase (2′5′AS) enzyme activity is controlled by a single-nucleotide polymorphism at a splice-acceptor site in the OAS1 gene. Am J Hum Genet 76:623–633. doi:10.1086/429391 Kristiansen H, Scherer CA, McVean M et al (2010) Extracellular 2′-5′ oligoadenylate synthetase stimulates RNase L-independent antiviral activity: a novel mechanism of virus-induced innate immunity. J Virol 84:11898–11904. doi:10.1128/JVI.01003-10 Choi UY, Kang J-S, Hwang YS, Kim Y-J (2015) Oligoadenylate synthase-like (OASL) proteins: dual functions and associations with diseases. Exp Mol Med 47:e144. doi:10.1038/emm.2014.110 Zhu J, Zhang Y, Ghosh A et al (2014) Antiviral activity of human OASL protein is mediated by enhancing signaling of the RIG-I RNA sensor. Immunity 40:936–948. doi:10.1016/j.immuni.2014.05.007 Lee MS, Kim B, Oh GT, Kim Y-J (2013) OASL1 inhibits translation of the type I interferon-regulating transcription factor IRF7. Nat Immunol 14:346–355. doi:10.1038/ni.2535 Meurs E, Chong K, Galabru J et al (1990) Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 62:379–390 Roberts WK, Hovanessian A, Brown RE et al (1976) Interferon-mediated protein kinase and low-molecular-weight inhibitor of protein synthesis. Nature 264:477–480. doi:10.1038/264477a0 Balachandran S, Roberts PC, Brown LE et al (2000) Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunity 13:129–141 Zhang L, Alter HJ, Wang H et al (2013) The modulation of hepatitis C virus 1a replication by PKR is dependent on NF-κB mediated interferon beta response in Huh7.5.1 cells. Virology 438:28–36. doi:10.1016/j.virol.2013.01.015 Jha BK, Polyakova I, Kessler P et al (2011) Inhibition of RNase L and RNA-dependent protein kinase (PKR) by sunitinib impairs antiviral innate immunity. J Biol Chem 286:26319–26326. doi:10.1074/jbc.M111.253443 de Wilde AH, Wannee KF, Scholte FEM et al (2015) A kinome-wide small interfering RNA screen identifies proviral and antiviral host factors in severe acute respiratory syndrome coronavirus replication, including double-stranded RNA-activated protein kinase and early secretory pathway proteins. J Virol 89:8318–8333. doi:10.1128/JVI.01029-15 Wang X, Hinson ER, Cresswell P (2007) The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host Microbe 2:96–105. doi:10.1016/j.chom.2007.06.009 Helbig KJ, Eyre NS, Yip E et al (2011) The antiviral protein viperin inhibits hepatitis C virus replication via interaction with nonstructural protein 5A. Hepatol Baltim Md 54:1506–1517. doi:10.1002/hep.24542 Perez-Caballero D, Zang T, Ebrahimi A et al (2009) Tetherin inhibits HIV-1 release by directly tethering virions to cells. Cell 139:499–511. doi:10.1016/j.cell.2009.08.039 Barrett BS, Smith DS, Li SX et al (2012) A single nucleotide polymorphism in tetherin promotes retrovirus restriction in vivo. PLoS Pathog 8:e1002596. doi:10.1371/journal.ppat.1002596 Jouvenet N, Neil SJD, Zhadina M et al (2009) Broad-spectrum inhibition of retroviral and filoviral particle release by tetherin. J Virol 83:1837–1844. doi:10.1128/JVI.02211-08 Sakuma T, Noda T, Urata S et al (2009) Inhibition of Lassa and Marburg virus production by tetherin. J Virol 83:2382–2385. doi:10.1128/JVI.01607-08 Mansouri M, Viswanathan K, Douglas JL et al (2009) Molecular mechanism of BST2/tetherin downregulation by K5/MIR2 of Kaposi’s sarcoma-associated herpesvirus. J Virol 83:9672–9681. doi:10.1128/JVI.00597-09 Arias JF, Heyer LN, von Bredow B et al (2014) Tetherin antagonism by Vpu protects HIV-infected cells from antibody-dependent cell-mediated cytotoxicity. Proc Natl Acad Sci USA 111:6425–6430. doi:10.1073/pnas.1321507111 Manns MP, Wedemeyer H, Cornberg M (2006) Treating viral hepatitis C: efficacy, side effects, and complications. Gut 55:1350–1359. doi:10.1136/gut.2005.076646 Piganis RAR, De Weerd NA, Gould JA et al (2011) Suppressor of cytokine signaling (SOCS) 1 inhibits type I interferon (IFN) signaling via the interferon alpha receptor (IFNAR1)-associated tyrosine kinase Tyk2. J Biol Chem 286:33811–33818. doi:10.1074/jbc.M111.270207 Tamiya T, Kashiwagi I, Takahashi R et al (2011) Suppressors of cytokine signaling (SOCS) proteins and JAK/STAT pathways. Arterioscler Thromb Vasc Biol 31:980–985. doi:10.1161/ATVBAHA.110.207464 Vlotides G, Sörensen AS, Kopp F et al (2004) SOCS-1 and SOCS-3 inhibit IFN-alpha-induced expression of the antiviral proteins 2,5-OAS and MxA. Biochem Biophys Res Commun 320:1007–1014. doi:10.1016/j.bbrc.2004.06.051 Akhtar LN, Benveniste EN (2011) Viral exploitation of host SOCS protein functions. J Virol 85:1912–1921. doi:10.1128/JVI.01857-10 Malakhov MP, Malakhova OA, Kim KI et al (2002) UBP43 (USP18) specifically removes ISG15 from conjugated proteins. J Biol Chem 277:9976–9981. doi:10.1074/jbc.M109078200 Ritchie KJ, Hahn CS, Kim KI et al (2004) Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection. Nat Med 10:1374–1378. doi:10.1038/nm1133 François-Newton V, Magno de Freitas Almeida G, Payelle-Brogard B et al (2011) USP18-based negative feedback control is induced by type I and type III interferons and specifically inactivates interferon α response. PLOS One 6:22200. doi:10.1371/journal.pone.0022200 Chen L, Borozan I, Feld J et al (2005) Hepatic gene expression discriminates responders and nonresponders in treatment of chronic hepatitis C viral infection. Gastroenterology 128:1437–1444 Borden EC, Sen GC, Uze G et al (2007) Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov 6:975–990. doi:10.1038/nrd2422 Haas DW, Lavelle J, Nadler JP et al (2000) A randomized trial of interferon alpha therapy for HIV type 1 infection. AIDS Res Hum Retroviruses 16:183–190. doi:10.1089/088922200309278 Zeuzem S, Berg T, Moeller B et al (2009) Expert opinion on the treatment of patients with chronic hepatitis C. J Viral Hepat 16:75–90. doi:10.1111/j.1365-2893.2008.01012.x Stevenson NJ, Bourke NM, Ryan EJ et al (2013) Hepatitis C virus targets the interferon-α JAK/STAT pathway by promoting proteasomal degradation in immune cells and hepatocytes. FEBS Lett 587:1571–1578. doi:10.1016/j.febslet.2013.03.041