Finite Rank Hankel Operators over the Complex Wiener Space
Tóm tắt
This work studies finite rank Hankel operators Hb on a Hilbert space of holomorphic, square integrable Wiener functionals. The main tool to investigate these operators is their unitary equivalent representation on the Hilbert space of skeletons. The finite rank property is characterized in terms of a functional equation for the symbol b, which generalizes the well known equation b(z+w)=b(z)b(w). Also finite rank symbols of polynomial type are characterized in terms of their chaos expansions.
Tài liệu tham khảo
Deck, T.: ‘Hankel operators over the complex Wiener space’, to appear in Potential Anal.
Deck, T.: ‘Hankel operators on Segal–Bargmann spaces’, in Proc. International Conf. in Hammamet (Tunesia 2001), Kluwer Academic Publishers, to appear. http://math.uma.pt/jluis/hammamet2001/hammamet2001.html
Deck, T. and Gross, L.: ‘Hankel operators over complex manifolds’, Pacific J. Math. 205(1) (2002), 43–97.
Deck, T., Potthoff, J. and Vage, G.: ‘A review of white noise analysis from a probabilistic standpoint’, Acta Appl. Math. 48 (1997), 91–112.
Elstrodt, J.: Maß- und Integrationstheorie, Springer-Verlag, 1996.
Gross, L. and Malliavin, P.: ‘Hall’s transform and the Segal–Bargmann map’, in N. Ikeda, S. Watanabe, M. Fukushima and H. Kunita (eds), Itô’s Stochastic Calculus and Probability Theory, Springer-Verlag, 1996, pp. 73–116.
Hille, E. and Phillips, R.: Functional Analysis and Semi-Groups, Amer. Math. Soc., Providence, RI, 1957.
Holland, F. and Rochberg, R.: ‘Bergman kernels and Hankel forms on generalized Fock spaces’, in K. Jarosz (ed.), Function Spaces, Contemporary Mathematics 232, 1999, pp. 189–200.
Holland, F. and Rochberg, R.: ‘Bergman kernel asymptotics for generalized Fock spaces’, J. Anal. Math. 83 (2001), 207–242.
Itô, K.: ‘Complex multiple Wiener integral’, Japan. J. Math. 22 (1952), 63–86.
Janson, S.: Gaussian Hilbert Spaces, Cambridge Univ. Press, 1998.
Janson, S. and Peetre, J.: ‘Weak factorization in periodic Fock space’, Math. Nachr. 146 (1990), 159–165.
Janson, S., Peetre, J. and Rochberg, R.: ‘Hankel forms and the Fock space’, Rev. Mat. Iberoamericana 3 (1987), 61–138.
Janson, S., Peetre, J. and Wallsten, R.: ‘A new look on Hankel forms over Fock space’, Stud. Math. 95(1) (1989), 33–41.
Mujica, J.: Complex Analysis in Banach Spaces, North-Holland Math. Studies 120, 1986.
Peetre, J.: ‘Hankel forms on Fock space modulo CN’, Result. Math. 14(3/4) (1988), 333–339.
Peetre, J.: ‘On the S4-norm of a Hankel form’, Rev. Mat. Iberoamericana 8(1) (1992), 121–130.
Shigekawa, I.: ‘Itô–Wiener expansions of holomorphic functions on the complex Wiener space’, in E. Meyer et al. (eds), Stochastic Analysis, Academic Press, San Diego, 1991, pp. 459–473.
Stroethoff, K.: ‘Hankel and Toeplitz operators on the Fock space’, Michigan Math. J. 39(1) (1992), 3–16.
Sugita, H.: ‘Holomorphic Wiener function’, in K. Elworthy, S. Kusuoka and I. Shigekawa (eds), New Trends in Stochastic Analysis, Proc. of a Taniguchi Int. Workshop, World Scientific, 1997, pp. 399–415.
Sugita, H.: ‘Properties of holomorphic Wiener functions – skeleton, contraction and local Taylor expansion’, Probab. Theory Related Fields 100 (1994), 117–130.
Sugita, H.: ‘Hu–Meyer’s multiple Stratonovich integral and essential continuity of multiple Wiener integrals’, Bull. Sci. Math. 2 Serie 113 (1989), 463–474.
Wallsten, R.: ‘The Sp-criterion for Hankel forms on the Fock space, 0<p<1’, Math. Scand. 64(1) (1989), 123–132.