Nanoparticle-Based Vectors for Gene Delivery
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences - Tập 82 - Trang 59-81 - 2012
Tóm tắt
Gene therapy holds a great potential for treating and correcting inherited as well as acquired diseases that rely on the transfer of nucleic acids-based materials into mammalian cells. A plethora of vector systems, based on biological (viral), physical and chemical (non-viral) methods, have been developed for the efficient delivery of these biopharmaceuticals, however, these have encountered several biological barriers, which present a challenge to clinical application of gene therapy. Recent developments in nanotechnology has thrown some light by offering efficient systems capable of carrying cargo to targeted sites without affecting the cellular environment. Here, the authors have reviewed various cellular barriers and current status of the chemical vectors to transfer nucleic acids-based therapeutics into the mammalian cells and to down regulate endogenous genes.
Tài liệu tham khảo
Niewohner J, Tannert C (2006) Gene therapy: prospective technology assessment in its societal context. Elsevier, UK
Leonetti JP, Mechti N, Degols G, Gagnor C, Lebleu B (1991) Intracellular distribution of microinjected antisense oligonucleotides. Proc Natl Acad Sci USA 88:2702–2706
Srivastava IK, Liu MA (2003) Gene vaccines. Ann Intern Med 138:550–559
Huang L, Hung M-C, Wagner E (1999) Non-viral vectors for gene therapy. Academic Press, San Diego
Frank MM, Fries LF (1991) The role of complement in inflammation and phagocytosis. Immunol Today 12:322–326
Gruenberg J, Maxfield FR (1995) Membrane transport in the endocytic pathway. Curr Opin Cell Biol 7:552–563
Robinson MS, Watts C, Zerial M (1996) Membrane dynamics in endocytosis. Cell 84:13–21
Gupta B, Levchenko TS, Torchilin VP (2005) Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev 57:637–651
Watson P, Jones AT, Stephens DJ (2005) Intracellular trafficking pathways and drug delivery: fluorescence imaging of living and fixed cells. Adv Drug Deliv Rev 57:43–61
Wu GY, Wu CH (1988) Receptor-mediated gene delivery and expression in vivo. J Biol Chem 263:14621–14624
Ferkol T, Perales JC, Mularo F, Hanson RW (1996) Receptor-mediated gene transfer into macrophages. Proc Natl Acad Sci USA 93:101–105
Diebold SS, Kursa M, Wagner E, Cotten M, Zenke M (1999) Mannose polyethylenimine conjugates for targeted DNA delivery into dendritic cells. J Biol Chem 274:19087–19094
Hashida M, Nishikawa M, Yamashita F, Takakura Y (2001) Cell-specific delivery of genes with glycosylated carriers. Adv Drug Deliv Rev 52:187–196
Caracciolo G, Caminiti R, Digman MA, Gratton E, Sanchez S (2009) Efficient escape from endosomes determines the superior efficiency of multicomponent lipoplexes. J Phys Chem B 113:4995–4997
Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301
Thomas M, Klibanov AM (2002) Enhancing polyethylenimine’s delivery of plasmid DNA into mammalian cells. Proc Natl Acad Sci USA 99:14640–14645
Rolland A (1999) Advanced gene delivery: from concepts to pharmaceutical products. CRC Press, USA
Nguyen DN, Green JJ, Chan JM, Langer R, Anderson DG (2009) Polymeric materials for gene delivery and DNA vaccination. Adv Mater 21:847–867
Lundstrom K (2003) Latest development in viral vectors for gene therapy. Trends Biotechnol 21:117–122
Barquinero J, Eixarch H, Pérez-Melgosa M (2004) Retroviral vectors: new applications for an old tool. Gene Ther 11:S3–S9
Jooss K, Chirmule N (2003) Immunity to adenovirus and adeno-associated viral vectors: implications for gene therapy. Gene Ther 10:955–963
McConnell MJ, Imperiale MJ (2004) Biology of adenovirus and its use as a vector for gene therapy. Hum Gene Ther 15:1022–1033
Flotte TR (2004) Gene therapy progress and prospects: recombinant adeno-associated virus (rAAV) vectors. Gene Ther 11:805–810
Ledley FD (1996) Pharmaceutical approach to somatic gene therapy. Pharm Res 13:1595–1614
Luo D, Saltzman WM (2000) Synthetic DNA delivery systems. Nat Biotechnol 18:33–37
Lechardeur D, Sohn K-J, Haardt M, Joshi PB, Monck M, Graham RW, Beatty B, Squire J, O’Brodovich H, Lukacs GL (1999) Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther 6:482–497
Houk BE, Hochhaus G, Hughes JA (1999) Kinetic modeling of plasmid DNA degradation in rat plasma. AAPS J 1:15–20
Magin-Lachmann C, Kotzamanis G, D’Aiuto L, Cooke H, Huxley C, Wagner E (2004) In vitro and in vivo delivery of intact BAC DNA—comparison of different methods. Gene Med 6:195–209
Andre F, Mir LM (2004) DNA electrotransfer: its principles and an updated review of its therapeutic applications. Gene Ther 11:S33–S42
Lin MTS, Pulkkinen L, Uitto J, Yoon K (2000) The gene gun: current applications in cutaneous gene therapy. Int J Dermatol 39:161–170
Yoshida Y, Kobayashi E, Endo H, Hamamoto T, Yamanaka T, Fujimura A, Kagawa Y (1997) Introduction of DNA into rat liver with a hand-held gene gun: distribution of the expressed enzyme, [32P]DNA, and Ca2+ flux. Biochem Biophys Res Commun 234:695–700
Kuriyama S, Mitoro A, Tsujinoue H, Nakatani T, Yoshiji H, Tsujimoto T, Yamazaki M, Fukui H (2000) Particle-mediated gene transfer into murine livers using a newly developed gene gun. Gene Ther 7:1132–1136
Roberts LK, Barr LJ, Fuller DH, McMahon CW, Leese PT, Jones S (2005) Clinical safety and efficacy of a powdered Hepatitis B nucleic acid vaccine delivered to the epidermis by a commercial prototype device. Vaccine 23:4867–4878
Sato H, Hattori S, Kawamoto S, Kudoh I, Hayashi A, Yamamoto I, Yoshinari M, Minami M, Kanno H (2000) In vivo gene gun-mediated DNA delivery into rodent brain tissue. Biochem Biophys Res Commun 270:163–170
Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845
Taniyama Y, Tachibana K, Hiraoka K, Aoki M, Yamamoto S, Matsumoto K, Nakamura T, Ogihara T, Kaneda Y, Morishita R (2002) Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Ther 9:372–380
Miller DL, Song J (2003) Tumor growth reduction and DNA transfer by cavitation-enhanced high-intensity focused ultrasound in vivo. Ultrasound Med Biol 29:887–893
Lu QL, Liang H-D, Partridge T, Blomley MJK (2003) Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Ther 10:396–405
Huber PE, Mann MJ, Melo LG, Ehsan A, Kong D, Zhang L, Rezvani M, Peschke P, Jolesz F, Dzau VJ, Hynynen K (2003) Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery. Gene Ther 10:1600–1607
Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Krüger A, Gänsbacher B, Plank C (2002) Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 9:102–109
Xenariou S, Griesenbach U, Ferrari S, Dean P, Scheule RK, Cheng SH, Geddes DM, Plank C, Alton EWFW (2006) Using magnetic forces to enhance non-viral gene transfer to airway epithelium in vivo. Gene Ther 13:1545–1552
Kurata S-I, Tsukakoshi M, Kasuya T, Ikawa Y (1986) The laser method for efficient introduction of foreign DNA into cultured cells. Exp Cell Res 162:372–378
Sagi S, Knoll T, Trojan L, Schaaf A, Alken P, Michel MS (2003) Gene delivery into prostate cancer cells by holmium laser application. Prostate Cancer Prostatic Dis 6:127–130
Shirahata Y, Ohkohchi N, Itagak H, Satomi S (2001) New technique for gene transfection using laser irradiation. J Investig Med 49:184–190
Tirlapur UK, Konig K (2002) Cell biology: targeted transfection by femtosecond laser. Nature 418:290–291
Terakawa M, Ogura M, Sato S, Wakisaka H, Ashida H, Uenoyama M, Masaki Y, Obara M (2004) Gene transfer into mammalian cells by use of a nanosecond pulsed laser-induced stress wave. Opt Lett 29:1227–1229
Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84:7413–7417
Koltover I, Salditt T, Ra¨dler JO, Safinya CR (1998) An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science 281:78–81
Radler JO, Koltover I, Salditt T, Safinya CR (1997) Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275:810–814
Templeton NS, Lasic DD, Frederik PM, Strey HH, Roberts DD, Pavlakis GN (1997) Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol 15:647–652
Zuidam NJ, Barenholz Y, Minsky A (1999) Chiral DNA packaging in DNA-cationic liposome assemblies. FEBS Lett 457:419–422
Tseng W-C, Haselton FR, Giorgio TD (1997) Transfection by cationic liposomes using simultaneous single cell measurements of plasmid delivery and transgene expression. J Biol Chem 272:25641–25647
Zabner J, Fasbender AJ, Moninger T, Poellinger KA, Welsh MJ (1995) Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem 270:18997–19007
Ochiya T, Takahama Y, Baba-Toriyama H, Tsukamoto M, Yasuda Y, Kikuchi H, Terada M (1999) Evaluation of cationic liposome suitable for gene transfer into pregnant animals. Biochem Biophys Res Commun 258:358–365
Kabanov VA, Zezin AB (1984) Soluble interpolymeric complexes as a new class of synthetic polyelectrolytes. Pure Appl Chem 56:343–354
Gershon H, Ghirlando R, Guttman SB, Minsky A (1993) Mode of formation and structural features of DNA-cationic liposome complexes used for transfection. Biochemistry 32:7143–7151
Behr JP, Demeneix B, Loeffler JP, Perez-Mutul J (1989) Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA. Proc Natl Acad Sci USA 86:6982–6986
Boukhnikachvili T, Aguerre-Chariol O, Airiau M, Lesieur S, Ollivon M, Vacus J (1997) Structure of in-serum transfecting DNA–cationic lipid complexes. FEBS Lett 409:188–194
Gao X, Huang L (1991) A novel cationic liposome reagent for efficient transfection of mammalian cells. Biochem Biophys Res Commun 179:280–285
Caplen NJ, Alton EWFW, Middleton PG, Dorin JR, Stevenson BJ, Gao X, Durham SR, Jeffery PK, Hodson ME, Coutelle C, Huang L, Porteous DJ, Williamson R, Geddes DM (1995) Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nature Med 1:39–46
Gill DR, Southern KW, Mofford KA, Seddon T, Huang L, Sorgi F, Thomson A, MacVinish LJ, Ratcliff R, Bilton D, Lane DJ, Littlewood JM, Webb AK, Middleton PG, Colledge WH, Cuthbert AW, Evans MJ, Higgins CF, Hyde SC (1997) A placebo-controlled study of liposome-mediated gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther 4:199–209
Ruysschaert JM, Elouahabi A, Willeaume V, Huez G, Fuks R, Vandenbranden M, Distefano P (1994) A novel cationic amphiphile for transfection of mammalian cells. Biochem Biophys Res Commun 203:1622–1628
Lewis JG, Lin KY, Kothavale A, Flanagan WM, Matteucci MD, DePrince RB, Mook RA Jr, Hendren RW, Wagner E (1996) A serum-resistant cytofectin for cellular delivery of antisense oligodeoxynucleotides and plasmid DNA. Proc Natl Acad Sci USA 93:3176–3181
Byk G, Dubertret C, Schwartz B, Frederic M, Jaslin G, Rangara R, Scherman D (1997) Novel nonviral vectors for gene delivery: synthesis and applications. Lett Pept Sci 4:263–267
Walker S, Sofia MJ, Kakarla R, Kogan NA, Wierichs L, Longley CB, Bruker K, Axelrod HR, Midha S, Babu S, Kahne D (1996) Cationic facial amphiphiles: a promising class of transfection agents. Proc Natl Acad Sci USA 93:1585–1590
Duffels A, Green LG, Ley SV, Miller AD (2000) Synthesis of high-mannose type neoglycolipids: active targeting of liposomes to macrophages in gene therapy. Chem Eur J 6:1416–1430
Kwok KY, Yang Y, Rice KG (2001) Evolution of cross-linked non-viral gene delivery systems. Curr Opin Mol Ther 3:142–146
Herscovici J, Egron MJ, Quenot A, Leclercq F, Leforestier N, Mignet N, Wetzer B, Scherman D (2001) Synthesis of new cationic lipids from an unsaturated glycoside scaffolds. Org Lett 3:1893–1896
Tang F, Hughes JA (1998) Introduction of a disulfide bond into a cationic lipid enhances transgene expression of plasmid DNA. Biochem Biophys Res Commun 242:141–145
Byk G, Wetzer B, Frederic M, Dubertret C, Pitard B, Jaslin G, Scherman D (2000) Reduction-sensitive lipopolyamines as a novel nonviral gene delivery system for modulated release of DNA with improved transgene expression. J Med Chem 43:4377–4387
Matulis D, Rouzina I, Bloomfield VA (2002) Thermodynamics of cationic lipid binding to DNA and DNA condensation: roles of electrostatics and hydrophobicity. J Am Chem Soc 124:7331–7342
Smisterova J, Wagenaar A, Stuart MCA, Polushkin E, ten Brinke G, Hulst R, Engberts JBFN, Hoekstra D (2001) Molecular shape of the cationic lipid controls the structure of cationic lipid/dioleylphosphatidylethanolamine-DNA complexes and the efficiency of gene delivery. J Biol Chem 276:47615–47622
Zuhorn IS, Oberle V, Visser WH, Engberts JBFN, Bakowsky U, Polushkin E, Hoekstra D (2002) Phase behavior of cationic amphiphiles and their mixtures with helper lipid influences lipoplex shape, DNA translocation, and transfection efficiency. Biophys J 83:2096–2108
Simberg D, Danino D, Talmon Y, Minsky A, Ferrari ME, Wheeler CJ, Barenholz Y (2001) Phase behavior, DNA ordering, and size instability of cationic lipoplexes: relevance to optimal transfection activity. J Biol Chem 276:47453–47459
Putnam D, Gentry CA, Pack DW, Langer R (2001) Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc Natl Acad Sci USA 98:1200–1205
Gebhart CL, Kabanov AV (2001) Evaluation of polyplexes as gene transfer agents. J Control Rel 73:401–416
Mintzer MA, Simanek EE (2009) Nonviral vectors for gene delivery. Chem Rev 109:259–302
Kunath K, von Harpe A, Fischer D, Kissel T (2003) Galactose-PEI–DNA complexes for targeted gene delivery: degree of substitution affects complex size and transfection efficiency. J Control Rel 88:159–172
Schipper NGM, Varum KM, Artursson P (1996) Chitosans as absorption enhancers for poorly absorbable drugs. 1: influence of molecular weight and degree of acetylation on drug transport across human intestinal epithelial (Caco-2) cells. Pharm Res 13:1686–1692
Rolland AP (1998) From genes to gene medicines: recent advances in nonviral gene delivery. Crit Rev Ther Drug Carr Syst 15:143–198
Liu WG, De Yao K (2002) Chitosan and its derivatives—a promising non-viral vector for gene transfection. J Control Rel 83:1–11
Lee KY, Kwon IC, Kim Y-H, Jo WH, Jeong SY (1998) Preparation of chitosan self-aggregates as a gene delivery system. J Control Rel 51:213–220
Thanou M, Florea BI, Geldof M, Junginger HE, Borchard G (2002) Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials 23:153–159
Yalpani M, Marchessault RH, Morin FG, Monasterios CJ (1991) Synthesis of poly(3-hydroxyalkanoate) (PHA) conjugates: PHA-carbohydrate and PHA-synthetic polymer conjugates. Macromolecules 24:6046–6049
Aoi K, Takasu A, Okada M (1994) Synthesis of novel chitin derivatives having poly(2-alkyl-2-oxazoline) side chains. Macromol Chem Phys 195:3835–3844
Morimoto M, Saimoto H, Shigemasa Y (2002) Control of functions of chitin and chitosan by chemical modification. Trends Glycosci Glycotechnol 14:205–222
Mao H-Q, Roy K, Troung-Le VL, Janes KA, Lin LY, Wang Y, August JT, Leong KW (2001) Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Rel 70:399–421
Park YK, Park YH, Shin BA, Choi ES, Park YR, Akaike T, Cho CS (2000) Galactosylated chitosan–graft–dextran as hepatocyte-targeting DNA carrier. J Control Rel 69:97–108
Strand SP, Lelu S, Reitan NK, de Lange DaviesC, Artursson P, Varum KM (2010) Molecular design of chitosan gene delivery systems with an optimized balance between polyplex stability and polyplex unpacking. Biomaterials 31:975–987
Park IK, Ihm JE, Park YH, Choi YJ, Kim SI, Kim WJ, Akaike T, Cho CS (2003) Galactosylated chitosan (GC)-graft-poly(vinyl pyrrolidone) (PVP) as hepatocyte-targeting DNA carrier: preparation and physicochemical characterization of GC-graft-PVP/DNA complex (1). J Control Rel 86:349–359
Erbacher P, Zou S, Bettinger T, Steffan A-M, Remy J–S (1998) Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharm Res 15:1332–1339
MacLaughlin FC, Mumper RJ, Wang J, Tagliaferri JM, Gill I, Hinchcliffe M, Rolland AP (1998) Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J Control Rel 56:259–272
Mack KD, Wei R, Elbagarri A, Abbey N, McGrath MS (1998) A novel method for DEAE-dextran mediated transfection of adherent primary cultured human macrophages. J Immunol Methods 211:79–86
Azzam T, Raskin A, Makovitzki A, Brem H, Vierling P, Lineal M, Domb AJ (2002) Cationic polysaccharides for gene delivery. Macromolecules 35:9947–9953
Azzam T, Eliyahu H, Shapira L, Linial M, Barenholz Y, Domb AJ (2002) Polysaccharide–oligoamine based conjugates for gene delivery. J Med Chem 45:1817–1824
Hosseinkhani H, Azzam T, Kobayashi H, Hiraoka Y, Shimokawa H, Domb AJ, Tabata Y (2006) Combination of 3D tissue engineered scaffold and non-viral gene carrier enhance in vitro DNA expression of mesenchymal stem cells. Biomaterials 27:4269–4278
Wu GY, Wu CH (1987) Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J Biol Chem 262:4429–4432
Mislick KA, Baldeschwieler JD, Kayyem JF, Meade TJ (1995) Transfection of folate-polylysine DNA complexes: evidence for lysosomal delivery. Bioconjug Chem 6:512–515
Oh S, Rih J, Kwon H, Hwang DS, Kim S, Yim J (1997) Lactoferrin as a gene delivery vehicle to hepatocytes. Exp Mol Med 29:111–116
Wagner E, Plank C, Zatloukal M, Cotten M, Birnstiel ML (1992) Influenza virus hemagglutinin HA-2N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proc Natl Acad Sci USA 89:7934–7938
Curiel DT, Wagner E, Cotten M, Birnstiel ML, Agarwal S, Li C-M, Loechel S, Hu P–C (1992) High-efficiency gene transfer mediated by adenovirus coupled to DNA–polylysine complexes. Hum Gene Ther 3:147–154
Meyer M, Zintchenko A, Ogris M, Wagner E (2007) A dimethylmaleic acid-melittin-polylysine conjugate with reduced toxicity, pH-triggered endosomolytic activity and enhanced gene transfer potential. J Gene Med 9:797–805
Clements BA, Incani V, Kucharski C, Lavasanifar A, Ritchie B, Uludağ H (2007) A comparative evaluation of poly-l-lysine-palmitic acid and Lipofectamine 2000™ for plasmid delivery to bone marrow stromal cells. Biomaterials 28:4693–4704
Arigita C, Zuidam NJ, Crommelin DJA, Hennink WE (1999) Association and dissociation characteristics of polymer/DNA complexes used for gene delivery. Pharm Res 16:534–1541
van de Wetering P, Moret EE, Schuurmans-Nieuwenbroek NME, van Steenbergen MJ, Hennink WE (1999) Structure—activity relationships of water-soluble cationic methacrylate/methacrylamide polymers for nonviral gene delivery. Bioconjug Chem 10:589–597
Cherng J-Y, van de Wetering P, Talsma H, Crommelin DJA, Hennink WE (1996) Effect of size and serum proteins on transfection efficiency of poly ((2-dimethylamino)ethyl Methacrylate)-plasmid nanoparticles. Pharm Res 13:1038–1042
Wolfert MA, Schacht EH, Toncheva V, Ulbrich K, Nazarova O, Seymour LW (1996) Characterization of vectors for gene therapy formed by self-assembly of DNA with synthetic block co-polymers. Hum Gene Ther 7:2123–2133
van Steenis JH, van Maarseveen EM, Verbaan FJ, Verrijk R, Crommelin DJA, Storm G, Hennink WE (2003) Preparation and characterization of folate-targeted pEG-coated pDMAEMA-based polyplexes. J Control Rel 87:167–176
Tang MX, Redemann CT, Szoka FC Jr (1996) In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug Chem 7:703–714
Fu H-L, Cheng S-X, Zhang X-Z, Zhuo R–X (2007) Dendrimer/DNA complexes encapsulated in a water soluble polymer and supported on fast degrading star poly(dl-lactide) for localized gene delivery. J Control Rel 124:181–188
Dung TH, Kim J, Kim MS, Kim JS, Yoo H (2008) Preparation and biophysical characterization of pluronic F127-dendrimer conjugate as a delivery agent of antisense oligonucleotides. J Nanosci Nanotechnol 8:5326–5330
Amiji MM (2004) Polymeric gene delivery: principles and applications. CRC Press, Boca Raton, MA
Kim T-I, Baek J-U, Bai CZ, Park J–S (2007) Arginine-conjugated polypropylenimine dendrimer as a non-toxic and efficient gene delivery carrier. Biomaterials 28:2061–2067
Lim Y-B, Kim T, Lee JW, Kim S-M, Kim H-J, Kim K, Park J–S (2002) Self-assembled ternary complex of cationic dendrimer, cucurbituril, and DNA: noncovalent strategy in developing a gene delivery carrier. Bioconjug Chem 13:1181–1185
Toth I, Sakthivel T, Wilderspin AF, Bayele H, O′Donnell M, Perry DJ, Pasi KJ, Lee CA, Florence AT (1999) Novel cationic lipidic peptide dendrimer vectors–in vitro gene delivery. STP Pharma Sci 9:93–100
Shah DS, Sakthivel T, Toth I, Florence AT, Wilderspin AF (2000) DNA transfection and transfected cell viability using amphipathic asymmetric dendrimers. Int J Pharm 208:41–48
Eom KD, Park SM, Tran HD, Kim MS, Yu RN, Yoo H (2007) Dendritic α, ε-poly(l-lysine)s as delivery agents for antisense oligonucleotides. Pharm Res 24:1581–1589
Inoue Y, Kurihara R, Tsuchida A, Hasegawa M, Nagashima T, Mori T, Niidome T, Katayama Y, Okitsu O (2008) Efficient delivery of siRNA using dendritic poly(l-lysine) for loss-of-function analysis. J Control Rel 126:59–66
Bayele HK, Sakthivel T, O′Donell M, Pasi KJ, Wilderspin AF, Lee CA, Toth I, Florence AT (2005) Versatile peptide dendrimers for nucleic acid delivery. J Pharm Sci 94:446–457
Yamagata M, Kawano T, Shiba K, Mori T, Katayama Y, Niidome T (2007) Structural advantage of dendritic poly(l-lysine) for gene delivery into cells. Bioorg Med Chem 15:526–532
Ribeiro S, Hussain N, Florence AT (2005) Release of DNA from dendriplexes encapsulated in PLGA nanoparticles. Int J Pharm 298:354–360
Loup C, Zanta M-A, Caminade A-M, Majoral J-P, Meunier B (1999) Preparation of water-soluble cationic phosphorus-containing dendrimers as DNA transfecting agents. Chem Eur J 5:3644–3650
Bermejo JF, Ortega P, Chonco L, Eritja R, Samaniego R, Mullner M, de Jesus E, de la Mata FJ, Flores JC, Gomez R, Munoz-Fernandez A (2007) Water-soluble carbosilane dendrimers: synthesis biocompatibility and complexation with oligonucleotides; evaluation for medical applications. Chem Eur J 13:483–495
Benns JM, Choi J-S, Mahato RI, Park J-S, Kim SW (2000) pH-Sensitive Cationic polymer gene delivery vehicle: N-Ac-poly(l-histidine)-graft-poly(l-lysine) comb shaped polymer. Bioconjug Chem 11:637–645
Fajac I, Allo J-C, Souil E, Merten M, Pichon C, Figarella C, Monsigny M, Briand P, Midoux P (2000) Histidylated polylysine as a synthetic vector for gene transfer into immortalized cystic fibrosis airway surface and airway gland serous cells. J Gene Med 2:368–378
Midoux P, Monsigny M (1990) Efficient gene transfer by histidylated polylysine/pDNA complexes. Bioconjug Chem 10:406–411
Boussif O, Delair T, Brua C, Veron L, Pavirani A, Kolbe HVJ (1999) Synthesis of polyallylamine derivatives and their use as gene transfer vectors in vitro. Bioconjug Chem 10:877–883
Pathak A, Aggarwal A, Kurupati RK, Patnaik S, Swami A, Singh Y, Kumar P, Vyas SP, Gupta KC (2007) Engineered polyallylamine nanoparticles for efficient in vitro transfection. Pharm Res 24:1427–1440
Lynn DM, Anderson DG, Putnam D, Langer R (2001) Accelerated discovery of synthetic transfection vectors: parallel synthesis and screening of a degradable polymer library. J Am Chem Soc 123:8155–8156
Anderson DG, Akinc A, Hossain N, Langer R (2005) Structure/property studies of polymeric gene delivery using a library of poly(β-amino esters). Mol Ther 11:426–434
Lim Y-B, Kim S-M, Lee Y, Lee W-K, Yang T-G, Lee M-J, Suh H, Park J–S (2001) Cationic hyperbranched poly(amino ester): a novel class of DNA condensing molecule with cationic surface, biodegradable three-dimensional structure, and tertiary amine groups in the interior. J Am Chem Soc 123:2460–2461
Luten J, van Steenis JH, van Someren R, Kemmink J, Schuurmans-Nieuwenbroek NME, Koning GA, Crommelin DJA, van Nostrum CF, Hennink WE (2003) Water-soluble biodegradable cationic polyphosphazenes for gene delivery. J Control Rel 89:483–497
Wang J, Mao H-Q, Leong KW (2001) A novel biodegradable gene carrier based on polyphosphoester. J Am Chem Soc 123:9480–9481
Wang J, Zhang P-C, Lu H-F, Ma N, Wang S, Mao H-Q, Leong KW (2002) New polyphosphoramidate with a spermidine side chain as a gene carrier. J Control Rel 83:157–168
Zwiorek K, Kloeckner J, Wagner E, Coester C (2004) Gelatin nanoparticles as a new and simple gene delivery system. J Pharm Pharmaceut Sci 7:22–28
Neu M, Fischer D, Kissel T (2005) Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. J Gene Med 7:992–1009
Fischer D, Bieber T, Li Y, Elsasser H-P, Kissel T (1999) A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res 16:1273–1279
Marschall P, Malik N, Larin Z (1999) Transfer of YACs up to 2.3 Mb intact into human cells with polyethylenimine. Gene Ther 6:1634–1637
Campeau P, Chapdelaine P, Seigneurin-Venin S, Massie B, Tremblay JP (2001) Transfection of large plasmids in primary human myoblasts. Gene Ther 8:1387–1394
Ferrari S, Moro E, Pettenazzo A, Behr JP, Zacchello F, Scarpa M (1997) ExGen 500 is an efficient vector for gene delivery to lung epithelial cells in vitro and in vivo. Gene Ther 4:1100–1106
Klotz IM, Sloniewsky AR (1968) Macromolecule-small molecule interactions: a synthetic polymer with greater affinity than serum albumin for small molecules. Biochem Biophys Res Commun 31:421–426
von Harpe A, Petersen H, Li Y, Kissel T (2000) Characterization of commercially available and synthesized polyethylenimines for gene delivery. J Control Rel 69:309–322
Sonawane ND, Szoka FC Jr, Verkman AS (2003) Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem 278:44826–44831
Akinc A, Thomas M, Klibanov AM, Langer R (2005) Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 7:657–663
Guillem VM, Aliño SF (2004) Transfection pathways of nonspecific and targeted PEI-polyplexes. Gene Ther Mol Biol 8:369–384
Godbey WT, Wu KK, Mikos AG (1999) Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. J Biomed Mater Res 45:268–275
Lim Y-B, Kim S-M, Suh H, Park J–S (2002) Biodegradable, endosome disruptive, and cationic network-type polymer as a highly efficient and nontoxic gene delivery carrier. Bioconjug Chem 13:952–957
Huh S-H, Do H-J, Lim H-Y, Kim D-K, Choi S-J, Song H, Kim N-H, Park J-K, Chang W-K, Chung H-M, Kim J–H (2007) Optimization of 25 kDa linear polyethylenimine for efficient gene delivery. Biologicals 35:165–171
Coll J-L, Chollet P, Brambilla E, Desplanques D, Behr JP, Favrot M (1999) In vivo delivery to tumors of DNA complexed with linear polyethylenimine. Hum Gene Ther 10:1659–1666
Wightman L, Kircheis R, Rossler V, Carotta S, Ruzicka R, Kursa M, Wagner E (2001) Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. Gene Med 3:362–372
Park Y, Kwok KY, Boukarim C, Rice KG (2002) Synthesis of sulfhydryl cross-linking poly(Ethylene Glycol)-peptides and glycopeptides as carriers for gene delivery. Bioconjug Chem 13:232–239
Forrest ML, Koerber JT, Pack DW (2003) A degradable polyethylenimine derivative with low toxicity for highly efficient gene delivery. Bioconjug Chem 14:934–940
Park MR, Han KO, Han IK, Cho MH, Nah JW, Choi YJ, Cho CS (2005) Degradable polyethylenimine-alt-poly(ethylene glycol) copolymers as novel gene carriers. J Control Rel 105:367–380
Tang GP, Guo HY, Alexis F, Wang X, Zeng S, Lim TM, Ding J, Yang YY, Wang S (2006) Low molecular weight polyethylenimines linked by β-cyclodextrin for gene transfer into the nervous system. J Gene Med 8:736–744
Kim YH, Park JH, Lee M, Kim Y-H, Park TG, Kim SW (2005) Polyethylenimine with acid-labile linkages as a biodegradable gene carrier. J Control Rel 103:209–219
Kircheis R, Schüller S, Brunner S, Ogris M, Heider K-H, Zauner W, Wagner E (1999) Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. Gene Med 1:111–120
Nimesh S, Goyal A, Pawar V, Jayaraman S, Kumar P, Chandra R, Singh Y, Gupta KC (2006) Polyethylenimine nanoparticles as efficient transfecting agents for mammalian cells. J Control Rel 110:457–468
Petersen H, Fechner PM, Martin AL, Kunath K, Stolnik S, Roberts CJ, Fischer D, Davies MC, Kissel T (2002) Polyethylenimine-graft-poly(ethylene glycol) copolymers: influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjug Chem 13:845–854
Brus C, Petersen H, Aigner A, Czubayko F, Kissel T (2004) Physicochemical and biological characterization of polyethylenimine-graft-poly(ethylene glycol) block copolymers as a delivery system for oligonucleotides and ribozymes. Bioconjug Chem 15:677–684
Mao S, Neu M, Germershaus O, Merkel O, Sitterberg J, Bakowsky U, Kissel T (2006) Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/siRNA polyplexes. Bioconjug Chem 17:1209–1218
Knorr V, Allmendinger L, Walker GF, Paintner FF, Wagner E (2007) An acetal-based PEGylation reagent for pH-sensitive shielding of DNA polyplexes. Bioconjug Chem 18:1218–1225
Patnaik S, Aggarwal A, Nimesh S, Goel A, Ganguli M, Saini N, Singh Y, Gupta KC (2006) PEI-alginate nanocomposites as efficient in vitro gene transfection agents. J Control Rel 114:398–409
Patnaik S, Arif M, Pathak A, Singh N, Gupta KC (2010) PEI-alginate nanocomposites: efficient non-viral vectors for nucleic acids. Int J Pharma 385:194–202
Pathak A, Kumar P, Chuttani K, Jain S, Mishra AK, Vyas SP, Gupta KC (2009) Gene expression, biodistribution, and pharmacoscintigraphic evaluation of chondroitin sulfate—PEI nanoconstructs mediated tumor gene therapy. ACS Nano 3:1493–1505
Pathak A, Swami A, Patnaik S, Jain S, Chuttani K, Mishra AK, Vyas SP, Kumar P, Gupta KC (2009) Efficient tumor targeting by polysaccharide decked polyethylenimine based nanocomposites. J Biomed Nanotechnol 5:264–277
Pun SH, Bellocq NC, Liu A, Jensen G, Machemer T, Quijano E, Schluep T, Wen S, Engler H, Heidel J, Davis ME (2004) Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjug Chem 15:831–840
Swami A, Aggarwal A, Pathak A, Patnaik S, Kumar P, Singh Y, Gupta KC (2007) Imidazolyl-PEI modified nanoparticles for enhanced gene delivery. Int J Pharm 335:180–192
Patnaik S, Arif M, Pathak A, Kurupati R, Singh Y, Gupta KC (2010) Cross-linked polyethylenimine-hexametaphosphate nanoparticles to deliver nucleic acids therapeutics. Nanomedicine 6:344–354
Swami A, Kurupati RK, Pathak A, Singh Y, Kumar P, Gupta KC (2007) A unique and highly efficient non-viral DNA/siRNA delivery system based on PEI-bisepoxide nanoparticles. Biochem Biophys Res Commun 362:835–841
Bae YM, Choi H, Lee S, Kang SH, Kim YT, Nam K, Park JS, Lee M, Choi JS (2007) Dexamethasone-conjugated low molecular weight polyethylenimine as a nucleus-targeting lipopolymer gene carrier. Bioconjug Chem 18:2029–2036
Kastrup L, Oberleithner H, Ludwig Y, Schafer C, Shahin V (2006) Nuclear envelope barrier leak induced by dexamethasone. J Cell Physiol 206:428–434
Han S-O, Mahato RI, Kim SW (2001) Water-soluble lipopolymer for gene delivery. Bioconjug Chem 12:337–345
Wang D-A, Narang AS, Kotb M, Gaber AO, Miller DD, Kim SW, Mahato RI (2002) Novel branched poly(ethylenimine)—cholesterol water-soluble lipopolymers for gene delivery. Biomacromolecules 3:1197–1207
McBain SC, Yiu HHP, El Haj A, Dobson J (2007) Polyethyleneimine functionalized iron oxide nanoparticles as agents for DNA delivery and transfection. J Mat Chem 17:2561–2565
Namgung R, Singha K, Yu MK, Jon S, Kim YS, Ahn Y, Park I-K, Kim WJ (2010) Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. Biomaterials 31:4204–4213
Swami A, Goyal R, Tripathi SK, Singh N, Katiyar N, Mishra AK, Gupta KC (2009) Effect of homobifunctional crosslinkers on nucleic acids delivery ability of PEI nanoparticles. Int J Pharma 374:125–138