Stability and error estimates of Strang splitting method for the nonlocal ternary conservative Allen–Cahn model
Tài liệu tham khảo
Rosca, 2004, Microparticle formation and its mechanism in single and double emulsion solvent evaporation, J. Control. Release, 99, 271, 10.1016/j.jconrel.2004.07.007
Seiler, 2000, Material effects on multiphase phenomena in late phases of severe accidents of nuclear reactors, Multiph. Sci. Technol., 12, 117, 10.1615/MultScienTechn.v12.i2.10
Yang, 2022, Phase field modeling and computation of multi-component droplet evaporation, Comput. Methods Appl. Mech. Engrg., 401, 10.1016/j.cma.2022.115675
Yang, 2022, Totally decoupled implicit-explicit linear scheme with corrected energy dissipation law for the phase-field fluid vesicle model, Comput. Methods Appl. Mech. Engrg., 399, 10.1016/j.cma.2022.115330
Boyer, 2006, Study of a three component Cahn–Hilliard flow model, Modél. Math. Anal. Numér., 40, 653, 10.1051/m2an:2006028
Boyer, 2011, Numerical schemes for a three component Cahn–Hilliard model, Modél. Math. Anal. Numér., 45, 697, 10.1051/m2an/2010072
Yang, 2017, Numerical approximations for a three-components Cahn–Hilliard phase-field model based on the invariant energy quadratization method, Math. Models Methods Appl. Sci., 27, 1993, 10.1142/S0218202517500373
Zhang, 2020, Decoupled, non-iterative, and unconditionally energy stable large time stepping method for the three-phase Cahn–Hilliard phase-field model, J. Comput. Phys., 404, 10.1016/j.jcp.2019.109115
Zhang, 2020, Unconditionally energy stable large time stepping method for the L2-gradient flow based ternary phase-field model with precise nonlocal volume conservation, Comput. Methods Appl. Mech. Engrg., 361, 10.1016/j.cma.2019.112743
Cahn, 1958, Free energy of a nonuniform system, I: interfacial free energy, J. Chem. Phys., 28, 258, 10.1063/1.1744102
Bates, 2006, On some nonlocal evolution equations arising in materials science, Fields Inst. Commun., 48, 13
Guan, 2014, Second order convex splitting schemes for periodic nonlocal Cahn–Hilliard and Allen–Cahn equations, J. Comput. Phys., 277, 48, 10.1016/j.jcp.2014.08.001
Shen, 2019, A new class of efficient and robust energy stable schemes for gradient flows, SIAM Rev., 61, 474, 10.1137/17M1150153
Liu, 2021, The fast scalar auxiliary variable approach with unconditional energy stability for nonlocal Cahn–Hilliard equation, Numer. Methods Partial Differ. Equ., 37, 244, 10.1002/num.22527
Tian, 2020, Asymptotically compatible schemes for robust discretization of parametrized problems with applications to nonlocal models, SIAM Rev., 62, 199, 10.1137/19M1296720
Du, 2018, Stabilized linear semi-implicit schemes for the nonlocal Cahn–Hilliard equation, J. Comput. Phys., 363, 39, 10.1016/j.jcp.2018.02.023
Li, 2021, Convergence analysis for a stabilized linear semi-implicit numerical scheme for the nonlocal Cahn–Hilliard equation, Math. Comp., 90, 171, 10.1090/mcom/3578
Zhai, 2021, A high order operator splitting method based on spectral deferred correction for the nonlocal viscous Cahn–Hilliard equation, J. Comput. Phys., 446, 10.1016/j.jcp.2021.110636
Dayal, 2007, A real-space non-local phase-field model of ferroelectric domain patterns in complex geometries, Acta Mater., 55, 1907, 10.1016/j.actamat.2006.10.049
Fritz, 2019, Local and nonlocal phase-field models of tumor growth and invasion due to ECM degradation, Math. Models Methods Appl. Sci., 29, 2433, 10.1142/S0218202519500519
Scarpa, 2021, On a class of non-local phase-field models for tumor growth with possibly singular potentials, chemotaxis and active transport, Nonlinearity, 34, 3199, 10.1088/1361-6544/abe75d
Rubinstein, 1992, Nonlocal reaction–diffusion equations and nucleation, IMA J. Appl. Math., 48, 249, 10.1093/imamat/48.3.249
Brassel, 2011, A modified phase field approximation for mean curvature flow with conservation of the volume, Math. Methods Appl. Sci., 34, 1157, 10.1002/mma.1426
Ward, 1996, Metastable bubble solutions for the Allen–Cahn equation with mass conservation, SIAM J. Appl. Math., 56, 1247, 10.1137/S0036139995282918
Yue, 2007, Spontaneous shrinkage of drops and mass conservation in phase-field simulations, J. Comput. Phys., 223, 1, 10.1016/j.jcp.2006.11.020
Blank, 2013, Nonlocal Allen–Cahn systems: analysis and a primal–dual active set method, IMA J. Numer. Anal., 33, 1126, 10.1093/imanum/drs039
Kim, 2014, A conservative Allen–Cahn equation with a space–time dependent Lagrange multiplier, Int. J. Eng. Sci., 84, 11, 10.1016/j.ijengsci.2014.06.004
Zhai, 2015, Investigations on several numerical methods for the non-local Allen–Cahn equation, Int. J. Heat Mass Transfer, 87, 111, 10.1016/j.ijheatmasstransfer.2015.03.071
Zhai, 2016, Fast explicit operator splitting method and time-step adaptivity for fractional nonlocal Allen–Cahn model, Appl. Math. Model., 40, 1315, 10.1016/j.apm.2015.07.021
Sun, 2019, Error estimates of energy stable numerical schemes for Allen–Cahn equations with nonlocal constraints, J. Sci. Comput., 79, 593, 10.1007/s10915-018-0867-7
Li, 2021, Unconditionally maximum bound principle preserving linear schemes for the conservative Allen–Cahn equation with nonlocal constraint, J. Sci. Comput., 98, 1, 10.1007/s10915-021-01519-7
Lee, 2022, A high-order and unconditionally energy stable scheme for the conservative Allen–Cahn equation with a nonlocal Lagrange multiplier, J. Sci. Comput., 90, 1, 10.1007/s10915-021-01735-1
Zhang, 2022, Explicit third-order unconditionally structure-preserving schemes for conservative Allen–Cahn equations, J. Sci. Comput., 90, 1, 10.1007/s10915-021-01681-y
Shen, 2018, The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys., 353, 407, 10.1016/j.jcp.2017.10.021
Wu, 2022, Unconditionally energy-stable time-marching methods for the multi-phase conservative Allen–Cahn fluid models based on a modified SAV approach, Comput. Methods Appl. Mech. Engrg., 398, 10.1016/j.cma.2022.115291
Tan, 2023, An efficient time-dependent auxiliary variable approach for the three-phase conservative Allen–Cahn fluids, Appl. Math. Comput., 438
Strang, 1968, On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 506, 10.1137/0705041
Goldman, 1996, NTh-order operator splitting schemes and nonreversible systems, SIAM J. Numer. Anal., 33, 349, 10.1137/0733018
Zhai, 2019, Error analysis and numerical simulations of strang splitting method for space fractional nonlinear schrödinger equation, J. Sci. Comput., 81, 965, 10.1007/s10915-019-01050-w
Shen, 2010
Gottlieb, 1998, Total variation diminishing Runge–Kutta schemes, Math. Comp., 67, 73, 10.1090/S0025-5718-98-00913-2
Li, 2022, Stability and convergence of strang splitting, part I: Scalar Allen–Cahn equation, J. Comput. Phys., 458, 10.1016/j.jcp.2022.111087
Li, 2022, Stability and convergence of strang splitting, part II: Tensorial Allen–Cahn equations, J. Comput. Phys., 454, 10.1016/j.jcp.2022.110985
Thalhammer, 2012, Convergence analysis of high-order time-splitting pseudospectral methods for nonlinear Schrödinger equations, SIAM J. Numer. Anal., 50, 3231, 10.1137/120866373
Li, 2017, Convergence of a fast explicit operator splitting method for the epitaxial growth model with slope selection, SIAM J. Numer. Anal., 55, 265, 10.1137/15M1041122
Moelans, 2011, A quantitative and thermodynamically consistent phase-field interpolation function for multi-phase systems, Acta Mater., 59, 1077, 10.1016/j.actamat.2010.10.038