Extracellular matrix structure

Advanced Drug Delivery Reviews - Tập 97 - Trang 4-27 - 2016
Achilleas D. Theocharis1, Spyros S. Skandalis1, Chrysostomi Gialeli1,2, Nikos K. Karamanos1
1Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
2Division of Medical Protein Chemistry, Department of Translational Medicine Malmö, Lund University, S-20502 Malmö, Sweden

Tài liệu tham khảo

Frantz, 2010, The extracellular matrix at a glance, J. Cell Sci., 123, 4195, 10.1242/jcs.023820 Clause, 2013, Extracellular matrix signaling in morphogenesis and repair, Curr. Opin. Biotechnol., 24, 830, 10.1016/j.copbio.2013.04.011 Theocharis, 2012, Extracellular matrix: a functional scaffold, 3 LeBleu, 2007, Structure and function of basement membranes, Exp. Biol. Med., 232, 1121, 10.3181/0703-MR-72 Halfter, 2015, New concepts in basement membrane biology, FEBS J., 10.1111/febs.13495 Behrens, 2012, The epidermal basement membrane is a composite of separate laminin- or collagen IV-containing networks connected by aggregated perlecan, but not by nidogens, J. Biol. Chem., 287, 18700, 10.1074/jbc.M111.336073 Paulsson, 1992, Basement membrane proteins: structure, assembly, and cellular interactions, Crit. Rev. Biochem. Mol. Biol., 27, 93, 10.3109/10409239209082560 Kirkpatrick, 2007, Heparan sulfate proteoglycans at a glance, J. Cell Sci., 120, 1829, 10.1242/jcs.03432 Rozario, 2010, The extracellular matrix in development and morphogenesis: a dynamic view, Dev. Biol., 341, 126, 10.1016/j.ydbio.2009.10.026 Jarvelainen, 2009, Extracellular matrix molecules: potential targets in pharmacotherapy, Pharmacol. Rev., 61, 198, 10.1124/pr.109.001289 Vlodavsky, 2013, Heparanase: multiple functions in inflammation, diabetes and atherosclerosis, Matrix Biol., 32, 220, 10.1016/j.matbio.2013.03.001 Lu, 2012, The extracellular matrix: a dynamic niche in cancer progression, J. Cell Biol., 196, 395, 10.1083/jcb.201102147 Bonnans, 2014, Remodelling the extracellular matrix in development and disease, Nat. Rev. Mol. Cell Biol., 15, 786, 10.1038/nrm3904 Theocharis, 2010, Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting, FEBS J., 277, 3904, 10.1111/j.1742-4658.2010.07800.x Afratis, 2012, Glycosaminoglycans: key players in cancer cell biology and treatment, FEBS J., 279, 1177, 10.1111/j.1742-4658.2012.08529.x Iozzo, 2011, Proteoglycans in cancer biology, tumour microenvironment and angiogenesis, J. Cell. Mol. Med., 15, 1013, 10.1111/j.1582-4934.2010.01236.x Iozzo, 2015, Proteoglycan form and function: a comprehensive nomenclature of proteoglycans, Matrix Biol., 42, 11, 10.1016/j.matbio.2015.02.003 Theocharis, 2014, Cell-matrix interactions: focus on proteoglycan-proteinase interplay and pharmacological targeting in cancer, FEBS J., 281, 5023, 10.1111/febs.12927 Theocharis, 2015, Insights into the key roles of proteoglycans in breast cancer biology and translational medicine, Biochim. Biophys. Acta, 1855, 276 Karamanos, 2014, Novel insights into matrix pathobiology regulatory mechanisms in health and disease, FEBS J., 281, 4978, 10.1111/febs.13106 Vigetti, 2014, Epigenetics in extracellular matrix remodeling and hyaluronan metabolism, FEBS J., 281, 4980, 10.1111/febs.12938 Heldin, 1993, Synthesis and assembly of the hyaluronan-containing coats around normal human mesothelial cells, Exp. Cell Res., 208, 422, 10.1006/excr.1993.1264 Laurent, 1992, Hyaluronan, FASEB J., 6, 2397, 10.1096/fasebj.6.7.1563592 Weigel, 2002, Functional characteristics and catalytic mechanisms of the bacterial hyaluronan synthases, IUBMB Life, 54, 201, 10.1080/15216540214931 DeAngelis, 1997, Hyaluronan synthase of chlorella virus PBCV-1, Science, 278, 1800, 10.1126/science.278.5344.1800 Knudson, 1993, Hyaluronan-binding proteins in development, tissue homeostasis, and disease, FASEB J., 7, 1233, 10.1096/fasebj.7.13.7691670 Hascall, 2004, Intracellular hyaluronan: a new frontier for inflammation?, Biochim. Biophys. Acta, 1673, 3, 10.1016/j.bbagen.2004.02.013 Li, 2007, Silencing of hyaluronan synthase 2 suppresses the malignant phenotype of invasive breast cancer cells, Int. J. Cancer, 120, 2557, 10.1002/ijc.22550 Toole, 1990, Hyaluronan and its binding proteins, the hyaladherins, Curr. Opin. Cell Biol., 2, 839, 10.1016/0955-0674(90)90081-O Turley, 2002, Signaling properties of hyaluronan receptors, J. Biol. Chem., 277, 4589, 10.1074/jbc.R100038200 Wu, 2005, The interaction of versican with its binding partners, Cell Res., 15, 483, 10.1038/sj.cr.7290318 Passi, 2012, Metabolic control of hyaluronan synthesis, 26 Jacobson, 2000, Expression of human hyaluronan synthases in response to external stimuli, Biochem. J., 348, 29, 10.1042/bj3480029 Itano, 1999, Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties, J. Biol. Chem., 274, 25085, 10.1074/jbc.274.35.25085 Stern, 2006, Hyaluronidases: their genomics, structures, and mechanisms of action, Chem. Rev., 106, 818, 10.1021/cr050247k Aspberg, 1997, The C-type lectin domains of lecticans, a family of aggregating chondroitin sulfate proteoglycans, bind tenascin-R by protein-protein interactions independent of carbohydrate moiety, Proc. Natl. Acad. Sci. U. S. A., 94, 10116, 10.1073/pnas.94.19.10116 Theocharis, 2008, Versican in health and disease, Connect. Tissue Res., 49, 230, 10.1080/03008200802147571 Mukhopadhyay, 2006, Erosive vitreoretinopathy and wagner disease are caused by intronic mutations in CSPG2/Versican that result in an imbalance of splice variants, Invest. Ophthalmol. Vis. Sci., 47, 3565, 10.1167/iovs.06-0141 Kischel, 2010, Versican overexpression in human breast cancer lesions: known and new isoforms for stromal tumor targeting, Int. J. Cancer, 126, 640, 10.1002/ijc.24812 Wight, 2014, Versican and the control of inflammation, Matrix Biol., 35, 152, 10.1016/j.matbio.2014.01.015 Wight, 2014, Versican and the regulation of cell phenotype in disease, Biochim. Biophys. Acta, 1840, 2441, 10.1016/j.bbagen.2013.12.028 Kim, 2009, Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis, Nature, 457, 102, 10.1038/nature07623 Liu, 2006, Extracellular regulators of axonal growth in the adult central nervous system, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci., 361, 1593, 10.1098/rstb.2006.1891 Davies, 2004, Decorin suppresses neurocan, brevican, phosphacan and NG2 expression and promotes axon growth across adult rat spinal cord injuries, Eur. J. Neurosci., 19, 1226, 10.1111/j.1460-9568.2004.03184.x Lu, 2012, The role of brevican in glioma: promoting tumor cell motility in vitro and in vivo, BMC Cancer, 12, 607, 10.1186/1471-2407-12-607 Dwyer, 2014, Brevican knockdown reduces late-stage glioma tumor aggressiveness, J. Neuro-Oncol., 120, 63, 10.1007/s11060-014-1541-z Chen, 2013, The regulatory roles of small leucine-rich proteoglycans in extracellular matrix assembly, FEBS J., 280, 2120, 10.1111/febs.12136 Reese, 2013, Effects of decorin proteoglycan on fibrillogenesis, ultrastructure, and mechanics of type I collagen gels, Matrix Biol., 32, 414, 10.1016/j.matbio.2013.04.004 Dunkman, 2013, Decorin expression is important for age-related changes in tendon structure and mechanical properties, Matrix Biol., 32, 3, 10.1016/j.matbio.2012.11.005 Chen, 2014, Interclass small leucine-rich repeat proteoglycan interactions regulate collagen fibrillogenesis and corneal stromal assembly, Matrix Biol., 35, 103, 10.1016/j.matbio.2014.01.004 Iozzo, 1999, Decorin is a biological ligand for the epidermal growth factor receptor, J. Biol. Chem., 274, 4489, 10.1074/jbc.274.8.4489 Goldoni, 2009, Decorin is a novel antagonistic ligand of the Met receptor, J. Cell Biol., 185, 743, 10.1083/jcb.200901129 Morcavallo, 2014, Decorin differentially modulates the activity of insulin receptor isoform A ligands, Matrix Biol., 35, 82, 10.1016/j.matbio.2013.12.010 Horvath, 2014, Decorin deficiency promotes hepatic carcinogenesis, Matrix Biol., 35, 194, 10.1016/j.matbio.2013.11.004 Merline, 2011, Signaling by the matrix proteoglycan decorin controls inflammation and cancer through PDCD4 and MicroRNA-21, Sci. Signal., 4, ra75, 10.1126/scisignal.2001868 Schaefer, 2012, Small leucine-rich proteoglycans, at the crossroad of cancer growth and inflammation, Curr. Opin. Genet. Dev., 22, 56, 10.1016/j.gde.2011.12.002 Skandalis, 2014, Cross-talk between estradiol receptor and EGFR/IGF-IR signaling pathways in estrogen-responsive breast cancers: focus on the role and impact of proteoglycans, Matrix Biol., 35, 182, 10.1016/j.matbio.2013.09.002 Nikolovska, 2014, A decorin-deficient matrix affects skin chondroitin/dermatan sulfate levels and keratinocyte function, Matrix Biol., 35, 91, 10.1016/j.matbio.2014.01.003 Vesentini, 2005, Estimation of the binding force of the collagen molecule-decorin core protein complex in collagen fibril, J. Biomech., 38, 433, 10.1016/j.jbiomech.2004.04.032 Bredrup, 2005, Congenital stromal dystrophy of the cornea caused by a mutation in the decorin gene, Invest. Ophthalmol. Vis. Sci., 46, 420, 10.1167/iovs.04-0804 Kim, 2011, A novel mutation of the decorin gene identified in a Korean family with congenital hereditary stromal dystrophy, Cornea, 30, 1473, 10.1097/ICO.0b013e3182137788 Yamaguchi, 1990, Negative regulation of transforming growth factor-beta by the proteoglycan decorin, Nature, 346, 281, 10.1038/346281a0 De Luca, 1996, Decorin-induced growth suppression is associated with up-regulation of p21, an inhibitor of cyclin-dependent kinases, J. Biol. Chem., 271, 18961, 10.1074/jbc.271.31.18961 Moscatello, 1998, Decorin suppresses tumor cell growth by activating the epidermal growth factor receptor, J. Clin. Invest., 101, 406, 10.1172/JCI846 Zhu, 2005, Decorin evokes protracted internalization and degradation of the epidermal growth factor receptor via caveolar endocytosis, J. Biol. Chem., 280, 32468, 10.1074/jbc.M503833200 Csordas, 2000, Sustained down-regulation of the epidermal growth factor receptor by decorin. A mechanism for controlling tumor growth in vivo, J. Biol. Chem., 275, 32879, 10.1074/jbc.M005609200 Buraschi, 2010, Decorin antagonizes Met receptor activity and down-regulates {beta}-catenin and Myc levels, J. Biol. Chem., 285, 42075, 10.1074/jbc.M110.172841 Neill, 2012, Decorin antagonizes the angiogenic network: concurrent inhibition of Met, hypoxia inducible factor 1alpha, vascular endothelial growth factor A, and induction of thrombospondin-1 and TIMP3, J. Biol. Chem., 287, 5492, 10.1074/jbc.M111.283499 Neill, 2013, Decorin induces rapid secretion of thrombospondin-1 in basal breast carcinoma cells via inhibition of Ras homolog gene family, member A/Rho-associated coiled-coil containing protein kinase 1, FEBS J., 280, 2353, 10.1111/febs.12148 Morrione, 2013, Dichotomy of decorin activity on the insulin-like growth factor-I system, FEBS J., 280, 2138, 10.1111/febs.12149 Buraschi, 2013, Decorin causes autophagy in endothelial cells via Peg3, Proc. Natl. Acad. Sci. U. S. A., 110, E2582, 10.1073/pnas.1305732110 Jarvelainen, 2015, Pivotal role for decorin in angiogenesis, Matrix Biol., 43, 15, 10.1016/j.matbio.2015.01.023 Neill, 2014, Instructive roles of extracellular matrix on autophagy, Am. J. Pathol., 184, 2146, 10.1016/j.ajpath.2014.05.010 Xu, 1998, Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice, Nat. Genet., 20, 78, 10.1038/1746 Kolb, 2001, Proteoglycans decorin and biglycan differentially modulate TGF-beta-mediated fibrotic responses in the lung, Am. J. Physiol. Lung Cell. Mol. Physiol., 280, L1327, 10.1152/ajplung.2001.280.6.L1327 Berendsen, 2014, Biglycan modulates angiogenesis and bone formation during fracture healing, Matrix Biol., 35, 223, 10.1016/j.matbio.2013.12.004 Schaefer, 2005, The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages, J. Clin. Invest., 115, 2223, 10.1172/JCI23755 Babelova, 2009, Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors, J. Biol. Chem., 284, 24035, 10.1074/jbc.M109.014266 Sjoberg, 2005, The extracellular matrix and inflammation: fibromodulin activates the classical pathway of complement by directly binding C1q, J. Biol. Chem., 280, 32301, 10.1074/jbc.M504828200 Oldberg, 2007, Collagen-binding proteoglycan fibromodulin can determine stroma matrix structure and fluid balance in experimental carcinoma, Proc. Natl. Acad. Sci. U. S. A., 104, 13966, 10.1073/pnas.0702014104 Jian, 2013, Fibromodulin promoted in vitro and in vivo angiogenesis, Biochem. Biophys. Res. Commun., 436, 530, 10.1016/j.bbrc.2013.06.005 Adini, 2014, Melanocyte-secreted fibromodulin promotes an angiogenic microenvironment, J. Clin. Invest., 124, 425, 10.1172/JCI69404 Leygue, 2000, Lumican and decorin are differentially expressed in human breast carcinoma, J. Pathol., 192, 313, 10.1002/1096-9896(200011)192:3<313::AID-PATH694>3.0.CO;2-B Sifaki, 2006, Lumican, a small leucine-rich proteoglycan substituted with keratan sulfate chains is expressed and secreted by human melanoma cells and not normal melanocytes, IUBMB Life, 58, 606, 10.1080/15216540600951605 Brezillon, 2007, Expression of lumican, a small leucine-rich proteoglycan with antitumour activity, in human malignant melanoma, Clin. Exp. Dermatol., 32, 405, 10.1111/j.1365-2230.2007.02437.x D'Onofrio, 2008, Identification of beta1 integrin as mediator of melanoma cell adhesion to lumican, Biochem. Biophys. Res. Commun., 365, 266, 10.1016/j.bbrc.2007.10.155 Brezillon, 2009, Lumican core protein inhibits melanoma cell migration via alterations of focal adhesion complexes, Cancer Lett., 283, 92, 10.1016/j.canlet.2009.03.032 Nikitovic, 2014, Lumican affects tumor cell functions, tumor-ECM interactions, angiogenesis and inflammatory response, Matrix Biol., 35, 206, 10.1016/j.matbio.2013.09.003 Nikitovic, 2008, Lumican expression is positively correlated with the differentiation and negatively with the growth of human osteosarcoma cells, FEBS J., 275, 350, 10.1111/j.1742-4658.2007.06205.x Nikitovic, 2011, Lumican regulates osteosarcoma cell adhesion by modulating TGFbeta2 activity, Int. J. Biochem. Cell Biol., 43, 928, 10.1016/j.biocel.2011.03.008 Pietraszek, 2014, Lumican: a new inhibitor of matrix metalloproteinase-14 activity, FEBS Lett., 588, 4319, 10.1016/j.febslet.2014.09.040 Willis, 2013, Endorepellin laminin-like globular 1/2 domains bind Ig3-5 of vascular endothelial growth factor (VEGF) receptor 2 and block pro-angiogenic signaling by VEGFA in endothelial cells, FEBS J., 280, 2271, 10.1111/febs.12164 Bix, 2006, Endorepellin in vivo: targeting the tumor vasculature and retarding cancer growth and metabolism, J. Natl. Cancer Inst., 98, 1634, 10.1093/jnci/djj441 Mongiat, 2003, Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan, J. Biol. Chem., 278, 4238, 10.1074/jbc.M210445200 Poluzzi, 2014, Endorepellin evokes autophagy in endothelial cells, J. Biol. Chem., 289, 16114, 10.1074/jbc.M114.556530 Smirnov, 2005, Conjugation of LG domains of agrins and perlecan to polymerizing laminin-2 promotes acetylcholine receptor clustering, J. Biol. Chem., 280, 41449, 10.1074/jbc.M508939200 Huze, 2009, Identification of an agrin mutation that causes congenital myasthenia and affects synapse function, Am. J. Hum. Genet., 85, 155, 10.1016/j.ajhg.2009.06.015 Nicole, 2014, Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy, Brain, 137, 2429, 10.1093/brain/awu160 Couchman, 2010, Transmembrane signaling proteoglycans, Annu. Rev. Cell Dev. Biol., 26, 89, 10.1146/annurev-cellbio-100109-104126 Xian, 2010, Syndecans as receptors and organizers of the extracellular matrix, Cell Tissue Res., 339, 31, 10.1007/s00441-009-0829-3 Yoneda, 2003, Regulation of cytoskeletal organization by syndecan transmembrane proteoglycans, Matrix Biol., 22, 25, 10.1016/S0945-053X(03)00010-6 Gotte, 2003, Syndecans in inflammation, FASEB J., 17, 575, 10.1096/fj.02-0739rev Alexopoulou, 2007, Syndecans in wound healing, inflammation and vascular biology, Int. J. Biochem. Cell Biol., 39, 505, 10.1016/j.biocel.2006.10.014 Tsonis, 2013, Evaluation of the coordinated actions of estrogen receptors with epidermal growth factor receptor and insulin-like growth factor receptor in the expression of cell surface heparan sulfate proteoglycans and cell motility in breast cancer cells, FEBS J., 280, 2248, 10.1111/febs.12162 Couchman, 2003, Syndecans: proteoglycan regulators of cell-surface microdomains?, Nat. Rev. Mol. Cell Biol., 4, 926, 10.1038/nrm1257 Pataki, 2012, Structure and function of syndecans, 197 Zhang, 1995, Repetitive Ser-Gly sequences enhance heparan sulfate assembly in proteoglycans, J. Biol. Chem., 270, 27127, 10.1074/jbc.270.45.27127 Multhaupt, 2009, Syndecan signaling: when, where and why?, J. Physiol. Pharmacol., 60, 31 Yamashita, 2004, Mammalian and Drosophila cells adhere to the laminin alpha4 LG4 domain through syndecans, but not glypicans, Biochem. J., 382, 933, 10.1042/BJ20040558 Vuoriluoto, 2008, Syndecan-1 supports integrin alpha2beta1-mediated adhesion to collagen, Exp. Cell Res., 314, 3369, 10.1016/j.yexcr.2008.07.005 Orend, 2003, Tenascin-C blocks cell-cycle progression of anchorage-dependent fibroblasts on fibronectin through inhibition of syndecan-4, Oncogene, 22, 3917, 10.1038/sj.onc.1206618 Nunes, 2008, Syndecan-4 contributes to endothelial tubulogenesis through interactions with two motifs inside the pro-angiogenic N-terminal domain of thrombospondin-1, J. Cell. Physiol., 214, 828, 10.1002/jcp.21281 Xian, 2012, Syndecans as receptors for pericellular molecules, 467 Yang, 2002, Soluble syndecan-1 promotes growth of myeloma tumors in vivo, Blood, 100, 610, 10.1182/blood.V100.2.610 Sanderson, 2012, Targeting heparanase for cancer therapy at the tumor-matrix interface, Matrix Biol., 31, 283, 10.1016/j.matbio.2012.05.001 Ramani, 2013, The heparanase/syndecan-1 axis in cancer: mechanisms and therapies, FEBS J., 280, 2294, 10.1111/febs.12168 Peterson, 2013, Multi-faceted substrate specificity of heparanase, Matrix Biol., 32, 223, 10.1016/j.matbio.2013.02.006 Purushothaman, 2010, Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis, Blood, 115, 2449, 10.1182/blood-2009-07-234757 Filmus, 2008, Glypicans, Genome Biol., 9, 224, 10.1186/gb-2008-9-5-224 Filmus, 2012, The glypican family, 209 Song, 2002, The role of glypicans in mammalian development, Biochim. Biophys. Acta, 1573, 241, 10.1016/S0304-4165(02)00390-2 Saunders, 1997, Expression of the cell surface proteoglycan glypican-5 is developmentally regulated in kidney, limb, and brain, Dev. Biol., 190, 78, 10.1006/dbio.1997.8690 Li, 2011, Glypican-5 stimulates rhabdomyosarcoma cell proliferation by activating Hedgehog signaling, J. Cell Biol., 192, 691, 10.1083/jcb.201008087 Capurro, 2009, Overgrowth of a mouse model of Simpson-Golabi-Behmel syndrome is partly mediated by Indian hedgehog, EMBO Rep., 10, 901, 10.1038/embor.2009.98 Capurro, 2008, Glypican-3 inhibits Hedgehog signaling during development by competing with patched for Hedgehog binding, Dev. Cell, 14, 700, 10.1016/j.devcel.2008.03.006 You, 2014, NG2 proteoglycan promotes tumor vascularization via integrin-dependent effects on pericyte function, Angiogenesis, 17, 61, 10.1007/s10456-013-9378-1 Jovanovic, 2014, Transforming growth factor beta receptor type III is a tumor promoter in mesenchymal-stem like triple negative breast cancer, Breast Cancer Res., 16, R69, 10.1186/bcr3684 Elderbroom, 2014, Ectodomain shedding of TbetaRIII is required for TbetaRIII-mediated suppression of TGF-beta signaling and breast cancer migration and invasion, Mol. Biol. Cell, 25, 2320, 10.1091/mbc.e13-09-0524 Theocharidis, 2014, Regulation of the neural stem cell compartment by extracellular matrix constituents, Prog. Brain Res., 214, 3, 10.1016/B978-0-444-63486-3.00001-3 Kolset, 2011, Serglycin: a structural and functional chameleon with wide impact on immune cells, J. Immunol., 187, 4927, 10.4049/jimmunol.1100806 Korpetinou, 2012, Serglycin: a novel player in the terrain of neoplasia, 677 Korpetinou, 2014, Serglycin: at the crossroad of inflammation and malignancy, Front. Oncol., 3, 327, 10.3389/fonc.2013.00327 Korpetinou, 2013, Serglycin is implicated in the promotion of aggressive phenotype of breast cancer cells, PLoS One, 8, 10.1371/journal.pone.0078157 Purushothaman, 2014, Serglycin proteoglycan is required for multiple myeloma cell adhesion, in vivo growth, and vascularization, J. Biol. Chem., 289, 5499, 10.1074/jbc.M113.532143 Theocharis, 2006, Serglycin constitutively secreted by myeloma plasma cells is a potent inhibitor of bone mineralization in vitro, J. Biol. Chem., 281, 35116, 10.1074/jbc.M601061200 Skliris, 2013, Cell-surface serglycin promotes adhesion of myeloma cells to collagen type I and affects the expression of matrix metalloproteinases, FEBS J., 280, 2342, 10.1111/febs.12179 Hamilton, 2015, Loss of Serglycin Promotes Primary Tumor Growth and Vessel Functionality in the RIP1-Tag2 Mouse Model for Spontaneous Insulinoma Formation, PLoS One, 10, 10.1371/journal.pone.0126688 Skliris, 2011, Serglycin inhibits the classical and lectin pathways of complement via its glycosaminoglycan chains: implications for multiple myeloma, Eur. J. Immunol., 41, 437, 10.1002/eji.201040429 Kadler, 2007, Collagens at a glance, J. Cell Sci., 120, 1955, 10.1242/jcs.03453 Heino, 2007, The collagen family members as cell adhesion proteins, BioEssays, 29, 1001, 10.1002/bies.20636 Shoulders, 2009, Collagen structure and stability, Annu. Rev. Biochem., 78, 929, 10.1146/annurev.biochem.77.032207.120833 Payne, 2013, The pathobiology of collagens in glioma, Mol. Cancer Res., 11, 1129, 10.1158/1541-7786.MCR-13-0236 Corsi, 2002, Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers-Danlos-like changes in bone and other connective tissues, J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res., 17, 1180, 10.1359/jbmr.2002.17.7.1180 Chessler, 1993, Mutations in the carboxyl-terminal propeptide of the pro alpha 1(I) chain of type I collagen result in defective chain association and produce lethal osteogenesis imperfecta, J. Biol. Chem., 268, 18218, 10.1016/S0021-9258(17)46833-5 Pace, 2001, J. Med. Genet., 38, 443, 10.1136/jmg.38.7.443 Myllyharju, 2004, Collagens, modifying enzymes and their mutations in humans, flies and worms, Trends Genet., 20, 33, 10.1016/j.tig.2003.11.004 Colige, 2005, Domains and maturation processes that regulate the activity of ADAMTS-2, a metalloproteinase cleaving the aminopropeptide of fibrillar procollagens types I-III and V, J. Biol. Chem., 280, 34397, 10.1074/jbc.M506458200 Boudko, 2012, Trimerization domains in collagens: chain selection, folding initiation, and triple-helix stabilization, 506 Than, 2002, The 1.9-A crystal structure of the noncollagenous (NC1) domain of human placenta collagen IV shows stabilization via a novel type of covalent Met-Lys cross-link, Proc. Natl. Acad. Sci. U. S. A., 99, 6607, 10.1073/pnas.062183499 Bogin, 2002, Insight into Schmid metaphyseal chondrodysplasia from the crystal structure of the collagen X NC1 domain trimer, Structure, 10, 165, 10.1016/S0969-2126(02)00697-4 Kvansakul, 2003, Crystal structure of the collagen alpha1(VIII) NC1 trimer, Matrix Biol., 22, 145, 10.1016/S0945-053X(02)00119-1 San Antonio, 2012, Collagen interactomes: mapping functional domains and mutations on fibrillar and network-forming collagens, 575 Wu, 1992, Identification of cross-linking sites in bovine cartilage type IX collagen reveals an antiparallel type II-type IX molecular relationship and type IX to type IX bonding, J. Biol. Chem., 267, 23007, 10.1016/S0021-9258(18)50048-X Huber, 1986, Identification of the type IX collagen polypeptide chains. The alpha 2(IX) polypeptide carries the chondroitin sulfate chain(s), J. Biol. Chem., 261, 5965, 10.1016/S0021-9258(17)38478-8 Fassler, 1994, Mice lacking alpha 1 (IX) collagen develop noninflammatory degenerative joint disease, Proc. Natl. Acad. Sci. U. S. A., 91, 5070, 10.1073/pnas.91.11.5070 Von der Mark, 2006, Structure, biosynthesis and gene regulation of collagens in cartilage and bone, 3 Franzke, 2002, Transmembrane collagen XVII, an epithelial adhesion protein, is shed from the cell surface by ADAMs, EMBO J., 21, 5026, 10.1093/emboj/cdf532 Wagenseil, 2007, New insights into elastic fiber assembly, Birth Defects Res. C Embryo Today, 81, 229, 10.1002/bdrc.20111 Muiznieks, 2010, Structural disorder and dynamics of elastin, Biochem. Cell Biol., 88, 239, 10.1139/O09-161 Sengle, 2015, The fibrillin microfibril scaffold: a niche for growth factors and mechanosensation?, Matrix Biol., 47, 3, 10.1016/j.matbio.2015.05.002 Downing, 1996, Solution structure of a pair of calcium-binding epidermal growth factor-like domains: implications for the Marfan syndrome and other genetic disorders, Cell, 85, 597, 10.1016/S0092-8674(00)81259-3 Sakamoto, 1996, Cell-type specific recognition of RGD- and non-RGD-containing cell binding domains in fibrillin-1, J. Biol. Chem., 271, 4916, 10.1074/jbc.271.9.4916 Bax, 2003, Cell adhesion to fibrillin-1 molecules and microfibrils is mediated by alpha 5 beta 1 and alpha v beta 3 integrins, J. Biol. Chem., 278, 34605, 10.1074/jbc.M303159200 Tiedemann, 2001, Interactions of fibrillin-1 with heparin/heparan sulfate, implications for microfibrillar assembly, J. Biol. Chem., 276, 36035, 10.1074/jbc.M104985200 Ritty, 2003, Fibrillin-1 and -2 contain heparin-binding sites important for matrix deposition and that support cell attachment, Biochem. J., 375, 425, 10.1042/bj20030649 Mecham, 2015, The microfibril-associated glycoproteins (MAGPs) and the microfibrillar niche, Matrix Biol., 47, 13, 10.1016/j.matbio.2015.05.003 Papke, 2014, Fibulin-4 and fibulin-5 in elastogenesis and beyond: Insights from mouse and human studies, Matrix Biol., 37, 142, 10.1016/j.matbio.2014.02.004 Danussi, 2011, EMILIN1-alpha4/alpha9 integrin interaction inhibits dermal fibroblast and keratinocyte proliferation, J. Cell Biol., 195, 131, 10.1083/jcb.201008013 Danussi, 2013, EMILIN1/alpha9beta1 integrin interaction is crucial in lymphatic valve formation and maintenance, Mol. Cell. Biol., 33, 4381, 10.1128/MCB.00872-13 Wells, 2015, MMP generated matrikines, Matrix Biol., 44-46C, 122, 10.1016/j.matbio.2015.01.016 George, 1993, Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin, Development, 119, 1079, 10.1242/dev.119.4.1079 Hynes, 1986, Fibronectins, Sci. Am., 254, 42, 10.1038/scientificamerican0686-42 Sasaki, 2012, Collagen-binding proteins, 592 Main, 1992, The three-dimensional structure of the tenth type III module of fibronectin: an insight into RGD-mediated interactions, Cell, 71, 671, 10.1016/0092-8674(92)90600-H Pankov, 2002, Fibronectin at a glance, J. Cell Sci., 115, 3861, 10.1242/jcs.00059 Davidson, 2004, Assembly and remodeling of the fibrillar fibronectin extracellular matrix during gastrulation and neurulation in Xenopus laevis, Dev. Dyn., 231, 888, 10.1002/dvdy.20217 Larsen, 2006, Cell and fibronectin dynamics during branching morphogenesis, J. Cell Sci., 119, 3376, 10.1242/jcs.03079 Moretti, 2007, A major fraction of fibronectin present in the extracellular matrix of tissues is plasma-derived, J. Biol. Chem., 282, 28057, 10.1074/jbc.M611315200 Avnur, 1981, The removal of extracellular fibronectin from areas of cell-substrate contact, Cell, 25, 121, 10.1016/0092-8674(81)90236-1 Leikina, 2002, Type I collagen is thermally unstable at body temperature, Proc. Natl. Acad. Sci. U. S. A., 99, 1314, 10.1073/pnas.032307099 Hynes, 2002, Integrins: bidirectional, allosteric signaling machines, Cell, 110, 673, 10.1016/S0092-8674(02)00971-6 Pierschbacher, 1984, Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule, Nature, 309, 30, 10.1038/309030a0 Wayner, 1989, Identification and characterization of the T lymphocyte adhesion receptor for an alternative cell attachment domain (CS-1) in plasma fibronectin, J. Cell Biol., 109, 1321, 10.1083/jcb.109.3.1321 Guan, 1990, Lymphoid cells recognize an alternatively spliced segment of fibronectin via the integrin receptor alpha 4 beta 1, Cell, 60, 53, 10.1016/0092-8674(90)90715-Q Aota, 1994, The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function, J. Biol. Chem., 269, 24756, 10.1016/S0021-9258(17)31456-4 Bowditch, 1994, Identification of a novel integrin binding site in fibronectin. Differential utilization by beta 3 integrins, J. Biol. Chem., 269, 10856, 10.1016/S0021-9258(17)34137-6 Saunders, 1988, Cell surface proteoglycan binds mouse mammary epithelial cells to fibronectin and behaves as a receptor for interstitial matrix, J. Cell Biol., 106, 423, 10.1083/jcb.106.2.423 Woods, 2000, Syndecan-4 binding to the high affinity heparin-binding domain of fibronectin drives focal adhesion formation in fibroblasts, Arch. Biochem. Biophys., 374, 66, 10.1006/abbi.1999.1607 Barkalow, 1994, Interactions between fibronectin and chondroitin sulfate are modulated by molecular context, J. Biol. Chem., 269, 3957, 10.1016/S0021-9258(17)41727-3 Woods, 1998, Syndecans: synergistic activators of cell adhesion, Trends Cell Biol., 8, 189, 10.1016/S0962-8924(98)01244-6 Morgan, 2007, Synergistic control of cell adhesion by integrins and syndecans, Nat. Rev. Mol. Cell Biol., 8, 957, 10.1038/nrm2289 Sottile, 2002, Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions, Mol. Biol. Cell, 13, 3546, 10.1091/mbc.e02-01-0048 Wierzbicka-Patynowski, 2007, Continuous requirement for pp 60-Src and phospho-paxillin during fibronectin matrix assembly by transformed cells, J. Cell. Physiol., 210, 750, 10.1002/jcp.20886 Georges-Labouesse, 1996, Mesodermal development in mouse embryos mutant for fibronectin, Dev. Dyn., 207, 145, 10.1002/(SICI)1097-0177(199610)207:2<145::AID-AJA3>3.0.CO;2-H Astrof, 2009, Fibronectins in vascular morphogenesis, Angiogenesis, 12, 165, 10.1007/s10456-009-9136-6 Oyama, 1989, Deregulation of alternative splicing of fibronectin pre-mRNA in malignant human liver tumors, J. Biol. Chem., 264, 10331, 10.1016/S0021-9258(18)81621-0 Inufusa, 1995, Localization of oncofetal and normal fibronectin in colorectal cancer. Correlation with histologic grade, liver metastasis, and prognosis, Cancer, 75, 2802, 10.1002/1097-0142(19950615)75:12<2802::AID-CNCR2820751204>3.0.CO;2-O Wan, 2013, Fibronectin conformation regulates the proangiogenic capability of tumor-associated adipogenic stromal cells, Biochim. Biophys. Acta, 1830, 4314, 10.1016/j.bbagen.2013.03.033 Chandler, 2012, Implanted adipose progenitor cells as physicochemical regulators of breast cancer, Proc. Natl. Acad. Sci. U. S. A., 109, 9786, 10.1073/pnas.1121160109 Durbeej, 2010, Laminins, Cell Tissue Res., 339, 259, 10.1007/s00441-009-0838-2 Iorio, 2015, Laminins: roles and utility in wound repair, Adv. Wound Care, 4, 250, 10.1089/wound.2014.0533 Aumailley, 2005, A simplified laminin nomenclature, Matrix Biol., 24, 326, 10.1016/j.matbio.2005.05.006 McLean, 2003, An unusual N-terminal deletion of the laminin alpha3a isoform leads to the chronic granulation tissue disorder laryngo-onycho-cutaneous syndrome, Hum. Mol. Genet., 12, 2395, 10.1093/hmg/ddg234 Miner, 2004, Laminin functions in tissue morphogenesis, Annu. Rev. Cell Dev. Biol., 20, 255, 10.1146/annurev.cellbio.20.010403.094555 Willem, 2002, Specific ablation of the nidogen-binding site in the laminin gamma1 chain interferes with kidney and lung development, Development, 129, 2711, 10.1242/dev.129.11.2711 Ido, 2008, Laminin isoforms containing the gamma3 chain are unable to bind to integrins due to the absence of the glutamic acid residue conserved in the C-terminal regions of the gamma1 and gamma2 chains, J. Biol. Chem., 283, 28149, 10.1074/jbc.M803553200 Taniguchi, 2009, The C-terminal region of laminin beta chains modulates the integrin binding affinities of laminins, J. Biol. Chem., 284, 7820, 10.1074/jbc.M809332200 Hallmann, 2005, Expression and function of laminins in the embryonic and mature vasculature, Physiol. Rev., 85, 979, 10.1152/physrev.00014.2004 Helbling-Leclerc, 1995, Mutations in the laminin alpha 2-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy, Nat. Genet., 11, 216, 10.1038/ng1095-216 Zenker, 2004, Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities, Hum. Mol. Genet., 13, 2625, 10.1093/hmg/ddh284 Kivirikko, 1996, Mutational hotspots in the LAMB3 gene in the lethal (Herlitz) type of junctional epidermolysis bullosa, Hum. Mol. Genet., 5, 231, 10.1093/hmg/5.2.231 Muhle, 2005, Novel and recurrent mutations in the laminin-5 genes causing lethal junctional epidermolysis bullosa: molecular basis and clinical course of Herlitz disease, Hum. Genet., 116, 33, 10.1007/s00439-004-1210-y Pulkkinen, 1994, Mutations in the gamma 2 chain gene (LAMC2) of kalinin/laminin 5 in the junctional forms of epidermolysis bullosa, Nat. Genet., 6, 293, 10.1038/ng0394-293 Marinkovich, 2007, Tumour microenvironment: laminin 332 in squamous-cell carcinoma, Nat. Rev. Cancer, 7, 370, 10.1038/nrc2089 Tran, 2008, Targeting a tumor-specific laminin domain critical for human carcinogenesis, Cancer Res., 68, 2885, 10.1158/0008-5472.CAN-07-6160 Murphy-Ullrich, 2001, The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state?, J. Clin. Invest., 107, 785, 10.1172/JCI12609 Bornstein, 2002, Matricellular proteins: extracellular modulators of cell function, Curr. Opin. Cell Biol., 14, 608, 10.1016/S0955-0674(02)00361-7 Bornstein, 2004, The role of thrombospondins 1 and 2 in the regulation of cell-matrix interactions, collagen fibril formation, and the response to injury, Int. J. Biochem. Cell Biol., 36, 1115, 10.1016/j.biocel.2004.01.012 Bornstein, 2009, Matricellular proteins: an overview, J. Cell Commun. Signal., 3, 163, 10.1007/s12079-009-0069-z Murphy-Ullrich, 2014, Revisiting the matricellular concept, Matrix Biol., 37, 1, 10.1016/j.matbio.2014.07.005 Giachelli, 2000, Osteopontin: a versatile regulator of inflammation and biomineralization, Matrix Biol., 19, 615, 10.1016/S0945-053X(00)00108-6 Brekken, 2001, SPARC, a matricellular protein: at the crossroads of cell-matrix communication, Matrix Biol., 19, 816, 10.1016/S0945-053X(00)00133-5 Adams, 2004, The thrombospondins, Int. J. Biochem. Cell Biol., 36, 961, 10.1016/j.biocel.2004.01.004 Hsia, 2005, Meet the tenascins: multifunctional and mysterious, J. Biol. Chem., 280, 26641, 10.1074/jbc.R500005200 Frangogiannis, 2012, Matricellular proteins in cardiac adaptation and disease, Physiol. Rev., 92, 635, 10.1152/physrev.00008.2011 Kyriakides, 2003, Matricellular proteins as modulators of wound healing and the foreign body response, Thromb. Haemost., 90, 986, 10.1160/TH03-06-0399 Alford, 2006, Matricellular proteins: Extracellular modulators of bone development, remodeling, and regeneration, Bone, 38, 749, 10.1016/j.bone.2005.11.017 Kyriakides, 2009, The role of thrombospondins in wound healing, ischemia, and the foreign body reaction, J. Cell Commun. Signal., 3, 215, 10.1007/s12079-009-0077-z Stenina-Adognravi, 2014, Invoking the power of thrombospondins: regulation of thrombospondins expression, Matrix Biol., 37, 69, 10.1016/j.matbio.2014.02.001 Stein, 2014, Thrombospondin-1-induced vascular smooth muscle cell migration and proliferation are functionally dependent on microRNA-21, Surgery, 155, 228, 10.1016/j.surg.2013.08.003 Dogar, 2014, Multiple microRNAs derived from chemically synthesized precursors regulate thrombospondin 1 expression, Nucleic Acid Ther., 24, 149, 10.1089/nat.2013.0467 Soto-Pantoja, 2014, Thrombospondin-1 and CD47 signaling regulate healing of thermal injury in mice, Matrix Biol., 37, 25, 10.1016/j.matbio.2014.05.003 Dabir, 2008, Aryl hydrocarbon receptor is activated by glucose and regulates the thrombospondin-1 gene promoter in endothelial cells, Circ. Res., 102, 1558, 10.1161/CIRCRESAHA.108.176990 Asparuhova, 2011, The transcriptional regulator megakaryoblastic leukemia-1 mediates serum response factor-independent activation of tenascin-C transcription by mechanical stress, FASEB J., 25, 3477, 10.1096/fj.11-187310 Durvasula, 2005, Mechanical strain increases SPARC levels in podocytes: implications for glomerulosclerosis, Am. J. Physiol. Renal Physiol., 289, F577, 10.1152/ajprenal.00393.2004 Chen, 2011, Thrombospondin 1 is a key mediator of transforming growth factor beta-mediated cell contractility in systemic sclerosis via a mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)-dependent mechanism, Fibrogenesis Tissue Repair, 4, 9, 10.1186/1755-1536-4-9 Kumei, 2006, Microgravity signal ensnarls cell adhesion, cytoskeleton, and matrix proteins of rat osteoblasts: osteopontin, CD44, osteonectin, and alpha-tubulin, Ann. N. Y. Acad. Sci., 1090, 311, 10.1196/annals.1378.034 Chiquet-Ehrismann, 2014, Tenascins in stem cell niches, Matrix Biol., 37, 112, 10.1016/j.matbio.2014.01.007 Ferrari do Outeiro-Bernstein, 2002, A recombinant NH(2)-terminal heparin-binding domain of the adhesive glycoprotein, thrombospondin-1, promotes endothelial tube formation and cell survival: a possible role for syndecan-4 proteoglycan, Matrix Biol., 21, 311, 10.1016/S0945-053X(02)00010-0 Saito, 2007, A peptide derived from tenascin-C induces beta1 integrin activation through syndecan-4, J. Biol. Chem., 282, 34929, 10.1074/jbc.M705608200 Todorovic, 2005, The matrix protein CCN1 (CYR61) induces apoptosis in fibroblasts, J. Cell Biol., 171, 559, 10.1083/jcb.200504015 Ohkawara, 2011, Rspo3 binds syndecan 4 and induces Wnt/PCP signaling via clathrin-mediated endocytosis to promote morphogenesis, Dev. Cell, 20, 303, 10.1016/j.devcel.2011.01.006 Godyna, 1995, Identification of the low density lipoprotein receptor-related protein (LRP) as an endocytic receptor for thrombospondin-1, J. Cell Biol., 129, 1403, 10.1083/jcb.129.5.1403 Segarini, 2001, The low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor is a receptor for connective tissue growth factor, J. Biol. Chem., 276, 40659, 10.1074/jbc.M105180200 Mason, 2013, Fell-Muir lecture: Connective tissue growth factor (CCN2) -- a pernicious and pleiotropic player in the development of kidney fibrosis, Int. J. Exp. Pathol., 94, 1, 10.1111/j.1365-2613.2012.00845.x Eroglu, 2009, Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis, Cell, 139, 380, 10.1016/j.cell.2009.09.025 Midwood, 2009, Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease, Nat. Med., 15, 774, 10.1038/nm.1987 Sadvakassova, 2009, Osteopontin and the C-terminal peptide of thrombospondin-4 compete for CD44 binding and have opposite effects on CD133+ cell colony formation, BMC Res. Notes, 2, 215, 10.1186/1756-0500-2-215 Shevde, 2010, Osteopontin: an effector and an effect of tumor metastasis, Curr. Mol. Med., 10, 71, 10.2174/156652410791065381 Schiemann, 2003, SPARC inhibits epithelial cell proliferation in part through stimulation of the transforming growth factor-beta-signaling system, Mol. Biol. Cell, 14, 3977, 10.1091/mbc.e03-01-0001 Nozaki, 2006, Loss of SPARC-mediated VEGFR-1 suppression after injury reveals a novel antiangiogenic activity of VEGF-A, J. Clin. Invest., 116, 422, 10.1172/JCI26316 Garg, 2011, Thrombospondin-1 opens the paracellular pathway in pulmonary microvascular endothelia through EGFR/ErbB2 activation, Am. J. Physiol. Lung Cell. Mol. Physiol., 301, L79, 10.1152/ajplung.00287.2010 Lynch, 2012, A thrombospondin-dependent pathway for a protective ER stress response, Cell, 149, 1257, 10.1016/j.cell.2012.03.050 Duquette, 2014, Members of the thrombospondin gene family bind stromal interaction molecule 1 and regulate calcium channel activity, Matrix Biol., 37, 15, 10.1016/j.matbio.2014.05.004 Ambily, 2014, The role of plasma membrane STIM1 and Ca(2+)entry in platelet aggregation. STIM1 binds to novel proteins in human platelets, Cell. Signal., 26, 502, 10.1016/j.cellsig.2013.11.025 Zohar, 2000, Intracellular osteopontin is an integral component of the CD44-ERM complex involved in cell migration, J. Cell. Physiol., 184, 118, 10.1002/(SICI)1097-4652(200007)184:1<118::AID-JCP13>3.0.CO;2-Y Emerson, 2006, Chaperone-like activity revealed in the matricellular protein SPARC, J. Cell. Biochem., 98, 701, 10.1002/jcb.20867 Chlenski, 2004, Neuroblastoma angiogenesis is inhibited with a folded synthetic molecule corresponding to the epidermal growth factor-like module of the follistatin domain of SPARC, Cancer Res., 64, 7420, 10.1158/0008-5472.CAN-04-2141 Wong, 2013, Matricellular proteins: priming the tumour microenvironment for cancer development and metastasis, Br. J. Cancer, 108, 755, 10.1038/bjc.2012.592 Yan, 2006, Transduction of a mesenchyme-specific gene periostin into 293T cells induces cell invasive activity through epithelial-mesenchymal transformation, J. Biol. Chem., 281, 19700, 10.1074/jbc.M601856200 Beiter, 2005, beta-Catenin regulates the expression of tenascin-C in human colorectal tumors, Oncogene, 24, 8200, 10.1038/sj.onc.1208960 Robert, 2006, SPARC represses E-cadherin and induces mesenchymal transition during melanoma development, Cancer Res., 66, 7516, 10.1158/0008-5472.CAN-05-3189 Kalluri, 2006, Fibroblasts in cancer, Nat. Rev. Cancer, 6, 392, 10.1038/nrc1877 Chlenski, 2010, Modulation of matrix remodeling by SPARC in neoplastic progression, Semin. Cell Dev. Biol., 21, 55, 10.1016/j.semcdb.2009.11.018 Sarkar, 2006, Tenascin-C stimulates glioma cell invasion through matrix metalloproteinase-12, Cancer Res., 66, 11771, 10.1158/0008-5472.CAN-05-0470 Takafuji, 2007, An osteopontin fragment is essential for tumor cell invasion in hepatocellular carcinoma, Oncogene, 26, 6361, 10.1038/sj.onc.1210463 Puente, 2003, Human and mouse proteases: a comparative genomic approach, Nat. Rev. Genet., 4, 544, 10.1038/nrg1111 Overall, 2004, Protease degradomics: mass spectrometry discovery of protease substrates and the CLIP-CHIP, a dedicated DNA microarray of all human proteases and inhibitors, Biol. Chem., 385, 493, 10.1515/BC.2004.058 Puente, 2004, A genomic analysis of rat proteases and protease inhibitors, Genome Res., 14, 609, 10.1101/gr.1946304 Lopez-Otin, 2008, Proteases: multifunctional enzymes in life and disease, J. Biol. Chem., 283, 30433, 10.1074/jbc.R800035200 Turk, 2006, Targeting proteases: successes, failures and future prospects, Nat. Rev. Drug Discov., 5, 785, 10.1038/nrd2092 Nagase, 2001, Metalloproteases, Chapter 21 Rawlings, 2010, MEROPS: the peptidase database, Nucleic Acids Res., 38, D227, 10.1093/nar/gkp971 Sterchi, 2008, Special issue: metzincin metalloproteinases, Mol. Asp. Med., 29, 255, 10.1016/j.mam.2008.08.007 Edwards, 2008, The ADAM metalloproteinases, Mol. Asp. Med., 29, 258, 10.1016/j.mam.2008.08.001 Blobel, 1992, A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion, Nature, 356, 248, 10.1038/356248a0 Visse, 2003, Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry, Circ. Res., 92, 827, 10.1161/01.RES.0000070112.80711.3D Nagase, 2006, Structure and function of matrix metalloproteinases and TIMPs, Cardiovasc. Res., 69, 562, 10.1016/j.cardiores.2005.12.002 Gomis-Ruth, 2009, Catalytic domain architecture of metzincin metalloproteases, J. Biol. Chem., 284, 15353, 10.1074/jbc.R800069200 van Goor, 2009, Adamalysins in biology and disease, J. Pathol., 219, 277, 10.1002/path.2594 Tousseyn, 2006, (Make) stick and cut loose--disintegrin metalloproteases in development and disease, Birth Defects Res. C Embryo Today, 78, 24, 10.1002/bdrc.20066 Fadnes, 2012, 4.4 Matrix metalloproteinase complexes and their biological significance Fields, 2015, New strategies for targeting matrix metalloproteinases, Matrix Biol., 44-46C, 239, 10.1016/j.matbio.2015.01.002 Hadler-Olsen, 2011, Regulation of matrix metalloproteinase activity in health and disease, FEBS J., 278, 28, 10.1111/j.1742-4658.2010.07920.x Nissinen, 2014, Matrix metalloproteinases in inflammation, Biochim. Biophys. Acta, 1840, 2571, 10.1016/j.bbagen.2014.03.007 Vihinen, 2002, Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets, Int. J. Cancer, 99, 157, 10.1002/ijc.10329 Butler, 2009, Updated biological roles for matrix metalloproteinases and new “intracellular” substrates revealed by degradomics, Biochemistry, 48, 10830, 10.1021/bi901656f Rodriguez, 2010, Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics, Biochim. Biophys. Acta, 1803, 39, 10.1016/j.bbamcr.2009.09.015 Stahtea, 2007, Imatinib inhibits colorectal cancer cell growth and suppresses stromal-induced growth stimulation, MT1-MMP expression and pro-MMP2 activation, Int. J. Cancer, 121, 2808, 10.1002/ijc.23029 Gialeli, 2011, Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting, FEBS J., 278, 16, 10.1111/j.1742-4658.2010.07919.x Pytliak, 2012, Matrix metalloproteinases and their role in oncogenesis: a review, Onkologie, 35, 49, 10.1159/000336304 McCawley, 2001, Matrix metalloproteinases: they're not just for matrix anymore!, Curr. Opin. Cell Biol., 13, 534, 10.1016/S0955-0674(00)00248-9 Gialeli, 2013, Expression of matrix macromolecules and functional properties of EGF-responsive colon cancer cells are inhibited by panitumumab, Investig. New Drugs, 31, 516, 10.1007/s10637-012-9875-x Bouris, 2015, Estrogen receptor alpha mediates epithelial to mesenchymal transition, expression of specific matrix effectors and functional properties of breast cancer cells, Matrix Biol., 43, 42, 10.1016/j.matbio.2015.02.008 Law, 2013, New insights into the structure and function of the plasminogen/plasmin system, Curr. Opin. Struct. Biol., 23, 836, 10.1016/j.sbi.2013.10.006 Patthy, 1985, Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules, Cell, 41, 657, 10.1016/S0092-8674(85)80046-5 Syrovets, 2012, Plasmin as a proinflammatory cell activator, J. Leukoc. Biol., 92, 509, 10.1189/jlb.0212056 Svineng, 2012, Plasmin and the plasminogen activator system in health and disease, 261 Hildenbrand, 2010, Modulators of the urokinase-type plasminogen activation system for cancer, Expert Opin. Investig. Drugs, 19, 641, 10.1517/13543781003767400 Gebbink, 2011, Tissue-type plasminogen activator-mediated plasminogen activation and contact activation, implications in and beyond haemostasis, J. Thromb. Haemost., 9, 174, 10.1111/j.1538-7836.2011.04278.x Ye, 2001, Serpins and other covalent protease inhibitors, Curr. Opin. Struct. Biol., 11, 740, 10.1016/S0959-440X(01)00275-5 Kwaan, 2009, The role of plasminogen-plasmin system in cancer, 43 Smith, 2010, Regulation of cell signalling by uPAR, Nat. Rev. Mol. Cell Biol., 11, 23, 10.1038/nrm2821 Lecaille, 2002, Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design, Chem. Rev., 102, 4459, 10.1021/cr0101656 Turk, 2012, Cysteine cathepsins: from structure, function and regulation to new frontiers, Biochim. Biophys. Acta, 1824, 68, 10.1016/j.bbapap.2011.10.002 Turk, 2001, Lysosomal cysteine proteases: facts and opportunities, EMBO J., 20, 4629, 10.1093/emboj/20.17.4629 Vasiljeva, 2007, Emerging roles of cysteine cathepsins in disease and their potential as drug targets, Curr. Pharm. Des., 13, 387, 10.2174/138161207780162962 Goulet, 2004, A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor, Mol. Cell, 14, 207, 10.1016/S1097-2765(04)00209-6 Puri, 2008, Mast cells possess distinct secretory granule subsets whose exocytosis is regulated by different SNARE isoforms, Proc. Natl. Acad. Sci. U. S. A., 105, 2580, 10.1073/pnas.0707854105 Reiser, 2004, Podocyte migration during nephrotic syndrome requires a coordinated interplay between cathepsin L and alpha3 integrin, J. Biol. Chem., 279, 34827, 10.1074/jbc.M401973200 Sever, 2007, Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease, J. Clin. Invest., 117, 2095, 10.1172/JCI32022 Wartmann, 2010, Cathepsin L inactivates human trypsinogen, whereas cathepsin L-deletion reduces the severity of pancreatitis in mice, Gastroenterology, 138, 726, 10.1053/j.gastro.2009.10.048 Deal, 2009, Potential new drug targets for osteoporosis, Nat. Clin. Pract. Rheumatol., 5, 20, 10.1038/ncprheum0977 Stoch, 2008, Cathepsin K inhibitors: a novel target for osteoporosis therapy, Clin. Pharmacol. Ther., 83, 172, 10.1038/sj.clpt.6100450 Funkelstein, 2008, Major role of cathepsin L for producing the peptide hormones ACTH, beta-endorphin, and alpha-MSH, illustrated by protease gene knockout and expression, J. Biol. Chem., 283, 35652, 10.1074/jbc.M709010200 Honey, 2003, Lysosomal cysteine proteases regulate antigen presentation, Nat. Rev. Immunol., 3, 472, 10.1038/nri1110 Mohamed, 2006, Cysteine cathepsins: multifunctional enzymes in cancer, Nat. Rev. Cancer, 6, 764, 10.1038/nrc1949 Takagi, 2003, Structure of integrin alpha5beta1 in complex with fibronectin, EMBO J., 22, 4607, 10.1093/emboj/cdg445 Hinz, 2012, Integrin function in heart fibrosis: mechanical strain, transforming growth factor-beta 1 activation, and collagen glycation, 406 Farndale, 2008, Cell-collagen interactions: the use of peptide Toolkits to investigate collagen-receptor interactions, Biochem. Soc. Trans., 36, 241, 10.1042/BST0360241 Orgel, 2011, Molecular and structural mapping of collagen fibril interactions, Connect. Tissue Res., 52, 2, 10.3109/03008207.2010.511353 Levental, 2009, Matrix crosslinking forces tumor progression by enhancing integrin signaling, Cell, 139, 891, 10.1016/j.cell.2009.10.027 Vogel, 1999, Discoidin domain receptors: structural relations and functional implications, FASEB J., 13, S77, 10.1096/fasebj.13.9001.s77 Vogel, 1997, The discoidin domain receptor tyrosine kinases are activated by collagen, Mol. Cell, 1, 13, 10.1016/S1097-2765(00)80003-9 Vogel, 2006, Sensing extracellular matrix: an update on discoidin domain receptor function, Cell. Signal., 18, 1108, 10.1016/j.cellsig.2006.02.012 Leitinger, 2011, Transmembrane collagen receptors, Annu. Rev. Cell Dev. Biol., 27, 265, 10.1146/annurev-cellbio-092910-154013 Rocca, 2012, Discoidin domain receptors: non-integrin collagen receptors on the move, 451 Shintani, 2008, Collagen I-mediated up-regulation of N-cadherin requires cooperative signals from integrins and discoidin domain receptor 1, J. Cell Biol., 180, 1277, 10.1083/jcb.200708137 Yeh, 2009, Discoidin domain receptor 1 activation suppresses alpha2beta1 integrin-dependent cell spreading through inhibition of Cdc42 activity, J. Cell. Physiol., 218, 146, 10.1002/jcp.21578 Wang, 2006, A discoidin domain receptor 1/SHP-2 signaling complex inhibits alpha2beta1-integrin-mediated signal transducers and activators of transcription 1/3 activation and cell migration, Mol. Biol. Cell, 17, 2839, 10.1091/mbc.e05-11-1068 Yang, 2010, Discoidin domain receptor 1 is associated with poor prognosis of non-small cell lung carcinomas, Oncol. Rep., 24, 311 Puré, 2012, CD44: a sensor of tissue damage critical for restoring homeostasis, 484 Misra, 2011, Hyaluronan-CD44 interactions as potential targets for cancer therapy, FEBS J., 278, 1429, 10.1111/j.1742-4658.2011.08071.x Ponta, 2003, CD44: from adhesion molecules to signalling regulators, Nat. Rev. Mol. Cell Biol., 4, 33, 10.1038/nrm1004 Orian-Rousseau, 2010, CD44, a therapeutic target for metastasising tumours, Eur. J. Cancer, 46, 1271, 10.1016/j.ejca.2010.02.024 Kozlova, 2012, IQGAP1 regulates hyaluronan-mediated fibroblast motility and proliferation, Cell. Signal., 24, 1856, 10.1016/j.cellsig.2012.05.013 Skandalis, 2010, Proteomic identification of CD44 interacting proteins, IUBMB Life, 62, 833, 10.1002/iub.392 Bourguignon, 1999, Rho-kinase (ROK) promotes CD44v(3,8-10)-ankyrin interaction and tumor cell migration in metastatic breast cancer cells, Cell Motil. Cytoskeleton, 43, 269, 10.1002/(SICI)1097-0169(1999)43:4<269::AID-CM1>3.0.CO;2-5 Bourguignon, 2000, CD44 interaction with tiam1 promotes Rac1 signaling and hyaluronic acid-mediated breast tumor cell migration, J. Biol. Chem., 275, 1829, 10.1074/jbc.275.3.1829 Bourguignon, 2002, Hyaluronan promotes signaling interaction between CD44 and the transforming growth factor beta receptor I in metastatic breast tumor cells, J. Biol. Chem., 277, 39703, 10.1074/jbc.M204320200 Bourguignon, 2001, CD44 interaction with c-Src kinase promotes cortactin-mediated cytoskeleton function and hyaluronic acid-dependent ovarian tumor cell migration, J. Biol. Chem., 276, 7327, 10.1074/jbc.M006498200 Pure, 2001, A crucial role for CD44 in inflammation, Trends Mol. Med., 7, 213, 10.1016/S1471-4914(01)01963-3 Naor, 2002, CD44 in cancer, Crit. Rev. Clin. Lab. Sci., 39, 527, 10.1080/10408360290795574 Katoh, 1995, Glycosylation of CD44 negatively regulates its recognition of hyaluronan, J. Exp. Med., 182, 419, 10.1084/jem.182.2.419 Skelton, 1998, Glycosylation provides both stimulatory and inhibitory effects on cell surface and soluble CD44 binding to hyaluronan, J. Cell Biol., 140, 431, 10.1083/jcb.140.2.431 Rochman, 2000, The CD44 receptor of lymphoma cells: structure-function relationships and mechanism of activation, Cell Adhes. Commun., 7, 331, 10.3109/15419060009015004 Greve, 2012, Flow cytometry in cancer stem cell analysis and separation, Cytometry A, 81, 284, 10.1002/cyto.a.22022 Chin, 2011, Cancer genomics: from discovery science to personalized medicine, Nat. Med., 17, 297, 10.1038/nm.2323 Bissell, 2001, Putting tumours in context, Nat. Rev. Cancer, 1, 46, 10.1038/35094059 Pollard, 2004, Tumour-educated macrophages promote tumour progression and metastasis, Nat. Rev. Cancer, 4, 71, 10.1038/nrc1256 Seo, 2014, In vitro models of tumor vessels and matrix: engineering approaches to investigate transport limitations and drug delivery in cancer, Adv. Drug Deliv. Rev., 69–70, 205, 10.1016/j.addr.2013.11.011 Skandalis, 2012, Pharmacological targeting of proteoglycans and metalloproteinases: an emerging aspect in cancer treatment, 785 Khawar, 2015, Improving drug delivery to solid tumors: priming the tumor microenvironment, J. Control Release, 201, 78, 10.1016/j.jconrel.2014.12.018 Anderson, 2006, Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment, Cell, 127, 905, 10.1016/j.cell.2006.09.042 Jain, 2013, Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol., 31, 2205, 10.1200/JCO.2012.46.3653 Ma, 2011, Antiangiogenesis enhances intratumoral drug retention, Cancer Res., 71, 2675, 10.1158/0008-5472.CAN-10-3242 Heldin, 2004, High interstitial fluid pressure—an obstacle in cancer therapy, Nat. Rev. Cancer, 4, 806, 10.1038/nrc1456 Klosowska-Wardega, 2009, Combined anti-angiogenic therapy targeting PDGF and VEGF receptors lowers the interstitial fluid pressure in a murine experimental carcinoma, PLoS One, 4, 10.1371/journal.pone.0008149 Rosca, 2011, Anti-angiogenic peptides for cancer therapeutics, Curr. Pharm. Biotechnol., 12, 1101, 10.2174/138920111796117300 Ritchie, 2011, SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis, Clin. Cancer Res., 17, 1382, 10.1158/1078-0432.CCR-10-2476 Barry-Hamilton, 2010, Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment, Nat. Med., 16, 1009, 10.1038/nm.2208 Liao, 2011, TGF-beta blockade controls ascites by preventing abnormalization of lymphatic vessels in orthotopic human ovarian carcinoma models, Clin. Cancer Res., 17, 1415, 10.1158/1078-0432.CCR-10-2429 Liu, 2012, TGF-beta blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma, Proc. Natl. Acad. Sci. U. S. A., 109, 16618, 10.1073/pnas.1117610109 Jacobetz, 2013, Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer, Gut, 62, 112, 10.1136/gutjnl-2012-302529 Blanquer, 2015, Delivery systems for the treatment of degenerated intervertebral discs, Adv. Drug Deliv. Rev., 84, 172, 10.1016/j.addr.2014.10.024 Martino, 2015, Extracellular matrix-inspired growth factor delivery systems for bone regeneration, Adv. Drug Deliv. Rev., 94, 41, 10.1016/j.addr.2015.04.007 Martino, 2011, Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing, Sci. Transl. Med., 3, 100ra189, 10.1126/scitranslmed.3002614 Kidd, 2005, Stimulated endothelial cell adhesion and angiogenesis with laminin-5 modification of expanded polytetrafluoroethylene, Tissue Eng., 11, 1379, 10.1089/ten.2005.11.1379 Kidd, 2004, Laminin-5-enriched extracellular matrix accelerates angiogenesis and neovascularization in association with ePTFE, J. Biomed. Mater. Res. A, 69, 294, 10.1002/jbm.a.20133 Min, 2010, The effect of a laminin-5-derived peptide coated onto chitin microfibers on re-epithelialization in early-stage wound healing, Biomaterials, 31, 4725, 10.1016/j.biomaterials.2010.02.045 Ikemoto, 2006, Laminin peptide-conjugated chitosan membrane: Application for keratinocyte delivery in wounded skin, J. Biomed. Mater. Res. A, 79, 716, 10.1002/jbm.a.30804 Alcaraz, 2014, Tenascin-X promotes epithelial-to-mesenchymal transition by activating latent TGF-beta, J. Cell Biol., 205, 409, 10.1083/jcb.201308031 Tuck, 2003, Osteopontin-induced migration of human mammary epithelial cells involves activation of EGF receptor and multiple signal transduction pathways, Oncogene, 22, 1198, 10.1038/sj.onc.1206209 Du, 2010, O-fucosylation of thrombospondin type 1 repeats restricts epithelial to mesenchymal transition (EMT) and maintains epiblast pluripotency during mouse gastrulation, Dev. Biol., 346, 25, 10.1016/j.ydbio.2010.07.008 Shevde, 2014, Role of osteopontin in the pathophysiology of cancer, Matrix Biol., 37, 131, 10.1016/j.matbio.2014.03.001 Yan, 2002, Alterations in the lens capsule contribute to cataractogenesis in SPARC-null mice, J. Cell Sci., 115, 2747, 10.1242/jcs.115.13.2747 Martinek, 2008, Haemocyte-derived SPARC is required for collagen-IV-dependent stability of basal laminae in Drosophila embryos, J. Cell Sci., 121, 1671, 10.1242/jcs.021931