Nutrient Budgets in Forests Under Increased Biomass Harvesting Scenarios

Current Forestry Reports - Tập 2 - Trang 81-91 - 2016
David Paré1, Evelyne Thiffault2
1Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, Canada
2Department of Wood and Forest Science, Research Centre on Renewable Materials, Université Laval, Québec, Canada

Tóm tắt

A developing bioeconomy and the need for alternate sources of energy are promoting a more intensive procurement and use of forest biomass. While it is a fact that increased biomass harvesting generates greater nutrient losses from forest ecosystems relative to stem-only harvesting, the use of nutrient budget approaches as a decision support tool in managing forests under intensive biomass removal is uncommon. This lack of use can be explained by several factors including: large uncertainties in predicting certain fluxes, the poor representation of nutrient dynamics following harvest in nutrient cycling models, the lack of representation of biological feedback, the lack of appropriate validation, and finally the lack of maps of specific soil properties that would be required to predict nutrient budgets over forest landscapes. This review documents the impact of intensive biomass extraction on nutrient cycling and discusses the gaps in knowledge and the uncertainties associated with nutrient budgets. It identifies research and development issues that need to be resolved for making forest nutrient budgets more reliable and more useful to address the questions regarding the environmental sustainability of intensive biomass harvesting.

Tài liệu tham khảo

IPCC. Good practice guidance for land use, land-use change and forestry. Intergovernmental Panel on Climate Change; 2003 Smeets EM, Faaij AP, Lewandowski IM, Turkenburg WC. A bottom-up assessment and review of global bio-energy potentials to 2050. Prog Energy Combust Sci. 2007;33(1):56–106. Lauri P, Havlík P, Kindermann G, Forsell N, Böttcher H, Obersteiner M. Woody biomass energy potential in 2050. Energy Policy. 2014;66:19–31. doi:10.1016/j.enpol.2013.11.033. Lamers P, Thiffault E, Paré D, Junginger M. Feedstock specific environmental risk levels related to biomass extraction for energy from boreal and temperate forests. Biomass Bioenergy. 2013;55(8):212–26. This paper provides a broad overview of the environmental issues concerning the extraction of forest biomass. Ranger J, Turpault M-P. Input-output nutrient budgets as a diagnostic tool for sustainable forest management. For Ecol Manage. 1999;122(1–2):139–54. doi:10.1016/S0378-1127(99)00038-9. Achat D, Deleuze C, Landmann G, Pousse N, Ranger J, Augusto L. Quantifying consequences of removing harvesting residues on forest soils and tree growth—a meta-analysis. For Ecol Manage. 2015;348:124–41. This paper provides a recent meta-analysis on the impact of harvesting forest residues on soils and tree growth. Augusto L, Achat DL, Bakker MR, Bernier F, Bert D, Danjon F, et al. Biomass and nutrients in tree root systems—sustainable harvesting of an intensively managed Pinus pinaster (Ait.) planted forest. GCB Bioenergy. 2015;7(2):231–43. doi:10.1111/gcbb.12127. Vangansbeke P, De Schrijver A, De Frenne P, Verstraeten A, Gorissen L, Verheyen K. Strong negative impacts of whole tree harvesting in pine stands on poor, sandy soils: a long-term nutrient budget modelling approach. For Ecol Manage. 2015;356:101-11. doi:10.1016/j.foreco.2015.07.028. Duchesne L, Houle D. Impact of nutrient removal through harvesting on the sustainability of the boreal forest. Ecol Appl. 2008;18(7):1642–51. doi:10.2307/40062239. Iwald J, Löfgren S, Stendahl J, Karltun E. Acidifying effect of removal of tree stumps and logging residues as compared to atmospheric deposition. For Ecol Manage. 2013;290:49–58. doi:10.1016/j.foreco.2012.06.022. Akselsson C, Westling O, Sverdrup H, Holmqvist J, Thelin G, Uggla E, et al. Impact of harvest intensity on long-term base cation budgets in Swedish forest soils. Water Air Soil Pollut: Focus. 2007;7(1-3):201–10. doi:10.1007/s11267-006-9106-6. Roach J, Berch SM. A compilation of forest biomass harvesting and related policy in Canada. 2014 Contract No.: 081. Evans AM, Perschel RT, Kittler BA. Overview of forest biomass harvesting guidelines. J Sustain For. 2012;32(1-2):89–107. doi:10.1080/10549811.2011.651786. Stupak I, Asikainen A, Röser D, Pasanen K. Review of recommendations for forest energy harvesting and wood ash recycling. In: Röser D, Asikainen A, Raulund-Rasmussen K, Stupak I, editors. Sustainable Use of Forest Biomass for Energy. Springer Netherlands: Managing Forest Ecosystems; 2008. p. 155–96. Abbas D, Current D, Phillips M, Rossman R, Hoganson H, Brooks KN. Guidelines for harvesting forest biomass for energy: a synthesis of environmental considerations. Biomass Bioenergy. 2011;35(11):4538–46. doi:10.1016/j.biombioe.2011.06.029. Nave LE, Vance ED, Swanston CW, Curtis PS. Harvest impacts on soil carbon storage in temperate forests. For Ecol Manage. 2010;259(5):857–66. Thiffault E, Hannam KD, Paré D, Titus BD, Hazlett PW, Maynard DG, et al. Effects of forest biomass harvesting on soil productivity in boreal and temperate forests—a review. Environ Rev. 2011;19(NA):278–309. A thorough review of published literature on the effects of forest biomass harvesting on soil, tree nutrition and tree growth. Paré D, Bernier P, Lafleur B, Titus BD, Thiffault E, Maynard DG, et al. Estimating stand-scale biomass, nutrient contents, and associated uncertainties for tree species of Canadian forests. Can J For Res. 2013;43(7):599–608. doi:10.1139/cjfr-2012-0454. Thiffault E, Béchard A, Paré D, Allen D. Recovery rate of harvest residues for bioenergy in boreal and temperate forests: a review. Wiley Interdiscip Rev: Energy Environ. 2014;4(5):429–51. Boring L, Swank W, Waide J, Henderson G. Sources, fates, and impacts of nitrogen inputs to terrestrial ecosystems: review and synthesis. Biogeochem. 1988;6(2):119-59. Vitousek PM, Howarth RW. Nitrogen limitation on land and in the sea—how can it occur. Biogeochemistry. 1991;13(2):87–115. Maynard DG, Paré D, Thiffault E, Lafleur B, Hogg KE, Kishchuk B. How do natural disturbances and human activities affect soils and tree nutrition and growth in the Canadian boreal forest? Environ Rev. 2014;22(2):161–78. doi:10.1139/er-2013-0057. Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, et al. The human footprint in the carbon cycle of temperate and boreal forests. Nature. 2007;447(7146):849–51. doi:10.1038/nature05847. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, et al. Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl. 1997;7(3):737–50. Akselsson C, Westling O. Regionalized nitrogen budgets in forest soils for different deposition and forestry scenarios in Sweden. Glob Ecol Biogeogr. 2005;14(1):85–95. doi:10.1111/j.1466-822X.2004.00137.x. Hazlett PW, Morris DM, Fleming RL. Effects of biomass removals on site carbon and nutrients and jack pine growth in boreal forests. Soil Sci Soc Am J. 2014;78(S1):S183–95. doi:10.2136/sssaj2013.08.0372nafsc. Vadeboncoeur MA, Hamburg SP, Yanai RD, Blum JD. Rates of sustainable forest harvest depend on rotation length and weathering of soil minerals. For Ecol Manage. 2014;318:194–205. doi:10.1016/j.foreco.2014.01.012. This study provides good examples of how assumptions on nutrient cycling rates can change the evaluation of the sustainability of forest harvesting. Rolff C, Ågren GI. Predicting effects of different harvesting intensities with a model of nitrogen limited forest growth. Ecol Model. 1999;118(2–3):193–211. doi:10.1016/S0304-3800(99)00043-5. Aherne J, Posch M, Forsius M, Lehtonen A, Härkönen K. Impacts of forest biomass removal on soil nutrient status under climate change: a catchment-based modelling study for Finland. Biogeochemistry. 2012;107(1-3):471–88. doi:10.1007/s10533-010-9569-4. Himes AJ, Turnblom EC, Harrison RB, Littke KM, Devine WD, Zabowski D, et al. Predicting risk of long-term nitrogen depletion under whole-tree harvesting in the coastal Pacific Northwest. For Sci. 2014;60(2):382–90. doi:10.5849/forsci.13-009. Merilä P, Mustajärvi K, Helmisaari H-S, Hilli S, Lindroos A-J, Nieminen TM, et al. Above- and below-ground N stocks in coniferous boreal forests in Finland: implications for sustainability of more intensive biomass utilization. For Ecol Manage. 2014;311:17–28. doi:10.1016/j.foreco.2013.06.029. Gundale MJ, Deluca TH, Nordin A. Bryophytes attenuate anthropogenic nitrogen inputs in boreal forests. Glob Chang Biol. 2011;17(8):2743–53. doi:10.1111/j.1365-2486.2011.02407.x. Chapman SK, Langley JA, Hart SC, Koch GW. Plants actively control nitrogen cycling: uncorking the microbial bottleneck. New Phytologist. 2006;169(1):27–34. doi:10.1111/j.1469-8137.2005.01571.x. Taylor AFS, Martin F, Read DJ. Fungal diversity in ectomycorrhizal communities of Norway spruce [Picea abies (L.) Karst.] and beech (Fagus sylvatica L.) along north-south transects in Europe. In: Schulze E-D, editor. Carbon and Nitrogen Cycling in European Forest Ecosystems. Springer Berlin Heidelberg: Ecological Studies; 2000. p. 343–65. Wallander H. A new hypothesis to explain allocation of dry matter between mycorrhizal fungi and pine seedlings in relation to nutrient supply. In: Nilsson LO, Hüttl RF, Johansson UT, editors. Nutrient uptake and cycling in forest ecosystems. Springer Netherlands: Developments in Plant and Soil Sciences; 1995. p. 243–8. Ericsson T. Growth and shoot: root ratio of seedlings in relation to nutrient availability. In: Nilsson LO, Hüttl RF, Johansson UT, editors. Nutrient uptake and cycling in forest ecosystems. Springer Netherlands: Developments in Plant and Soil Sciences; 1995. p. 205–14. Johnson DW, Turner J. Nitrogen budgets of forest ecosystems: a review. For Ecol Manage. 2014;318:370–9. doi:10.1016/j.foreco.2013.08.028. Simonsson M, Bergholm J, Olsson BA, Brömssen CV, Oborn I. Estimating weathering rates using base cation budgets in a Norway spruce stand on podzolised soil: analysis of fluxes and uncertainties. For Ecol Manage. 2015;340:135–52. doi:10.1016/j.foreco.2014.12.024. Futter MN, Klaminder J, Lucas RW, Laudon H, Köhler SJ. Uncertainty in silicate mineral weathering rate estimates: source partitioning and policy implications. Environ Res Lett. 2012;7(2):024025. Klaminder J, Lucas RW, Futter MN, Bishop KH, Köhler SJ, Egnell G, et al. Silicate mineral weathering rate estimates: are they precise enough to be useful when predicting the recovery of nutrient pools after harvesting? For Ecol Manage. 2011;261(1):1–9. doi:10.1016/j.foreco.2010.09.040. Lucas RW, Holmström H, Lämås T. Intensive forest harvesting and pools of base cations in forest ecosystems: a modeling study using the Heureka decision support system. For Ecol Manage. 2014;325:26–36. doi:10.1016/j.foreco.2014.03.053. Johnson J, Aherne J, Cummins T. Base cation budgets under residue removal in temperate maritime plantation forests. For Ecol Manage. 2015;343:144–56. doi:10.1016/j.foreco.2015.01.022. Augustin F, Houle D, Gagnon C, Courchesne F. Long-term base cation weathering rates in forested catchments of the Canadian Shield. Geoderma. 2015;247–248:12–23. doi:10.1016/j.geoderma.2015.01.016. Rosling A, Finlay RD, Gadd GM. Geomycology. Fungal Bio Rev. 2009;23(4):91–3. doi:10.1016/j.fbr.2010.03.005. Finlay R, Wallander H, Smits M, Holmstrom S, van Hees P, Lian B, et al. The role of fungi in biogenic weathering in boreal forest soils. Fungal Biology Rev. 2009;23(4):101–6. doi:10.1016/j.fbr.2010.03.002. Taktek S, Trépanier M, Servin PM, St-Arnaud M, Piché Y, Fortin JA, et al. Trapping of phosphate solubilizing bacteria on hyphae of the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM 197198. Soil Biol Biochem. 2015;90:1–9. doi:10.1016/j.soilbio.2015.07.016. Smits MM, Bonneville S, Benning LG, Banwart SA, Leake JR. Plant-driven weathering of apatite—the role of an ectomycorrhizal fungus. Geobiology. 2012;10(5):445–56. doi:10.1111/j.1472-4669.2012.00331.x. Dickie I, Martínez-García L, Koele N, Grelet GA, Tylianakis J, Peltzer D, et al. Mycorrhizas and mycorrhizal fungal communities throughout ecosystem development. Plant Soil. 2013;367(1-2):11–39. doi:10.1007/s11104-013-1609-0. Koele N, Dickie IA, Blum JD, Gleason JD, de Graaf L. Ecological significance of mineral weathering in ectomycorrhizal and arbuscular mycorrhizal ecosystems from a field-based comparison. Soil Biol Biochem. 2014;69:63–70. doi:10.1016/j.soilbio.2013.10.041. Dickie IA, Koele N, Blum JD, Gleason JD, McGlone MS. Mycorrhizas in changing ecosystems. Botany. 2014;92(2):149–60. doi:10.1139/cjb-2013-0091. Lian B, Wang B, Pan M, Liu C, Teng HH. Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta. 2008;72(1):87–98. doi:10.1016/j.gca.2007.10.005. Balogh-Brunstad Z, Keller CK, Dickinson JT, Stevens F, Li CY, Bormann BT. Biotite weathering and nutrient uptake by ectomycorrhizal fungus, Suillus tomentosus, in liquid-culture experiments. Geochim Cosmochim Acta. 2008;72(11):2601–18. doi:10.1016/j.gca.2008.04.003. Bonneville S, Smits MM, Brown A, Harrington J, Leake JR, Brydson R, et al. Plant-driven fungal weathering: early stages of mineral alteration at the nanometer scale. Geology. 2009;37(7):615–8. doi:10.1130/g25699a.1. Yanai RD, Blum JD, Hamburg SP, Arthur MA, Nezat CA, Siccama TG. New insights into calcium depletion in northeastern forests. J For. 2005;103(1):14–20. Bélanger N, Paré D, Bouchard M, Daoust G. Is the use of trees with superior growth a threat to soil nutrient availability? A case study with Norway spruce. Can J For Res. 2004;34(3):560–72. doi:10.1139/x03-216. Olsson BA, Bengtsson J, Lundkvist H. Effects of different forest harvest intensities on the pools of exchangeable cations in coniferous forest soils. For Ecol Manage. 1996;84(1–3):135–47. doi:10.1016/0378-1127(96)03730-9. Bélanger N, Paré D, Yamasaki SH. The soil acid-base status of boreal black spruce stands after whole-tree and stem-only harvesting. Can J Forest Res. 2003;33(10):1874–9. doi:10.1139/x03-113. Paré D, Markewitz D, Wallander H. Biogeochemical cycling. In: Peh KS-H, Corlett RT, Bergeron Y, editors. Routledge handbook of forest ecology. London 2015. p. 327-40. This book chapter provides an introduction to nutrient cycling in forest ecosystems. Kimmins H. Balancing act: environmental issues in forestry. 2nd ed. Vancouver, BC, Canada: UBC Press; 1992. Thiffault E, Paré D, Bélanger N, Munson A, Marquis F. Harvesting intensity at clear-felling in the boreal forest. Soil Sci Soc Am J. 2006;70(2):691–701. doi:10.2136/sssaj2005.0155. Brais S, Paré D, Lierman C. Tree bole mineralization rates of four species of the Canadian eastern boreal forest: implications for nutrient dynamics following stand-replacing disturbances. Can J For Res. 2006;36(9):2331–40. doi:10.1139/x06-136. McCavour MJ, Paré D, Messier C, Thiffault N, Thiffault E. The role of aggregated forest harvest residue in soil fertility, plant growth, and pollination services. Soil Sci Soc Am J. 2014;78:S196–207. doi:10.2136/sssaj2013.08.0373nafsc. Smolander A, Kitunen V, Kukkola M, Tamminen P. Response of soil organic layer characteristics to logging residues in three Scots pine thinning stands. Soil Biol Biochem. 2013;66:51–9. doi:10.1016/j.soilbio.2013.06.017. Adamczyk B, Adamczyk S, Kukkola M, Tamminen P, Smolander A. Logging residue harvest may decrease enzymatic activity of boreal forest soils. Soil Biol Biochem. 2015;82:74-80. doi:10.1016/j.soilbio.2014.12.017. Zetterberg T, Köhler SJ, Löfgren S. Sensitivity analyses of MAGIC modelled predictions of future impacts of whole-tree harvest on soil calcium supply and stream acid neutralizing capacity. Sci Total Environ. 2014;494–495:187–201. doi:10.1016/j.scitotenv.2014.06.114. This study contains a good discussion on modelled versus empirical data with respect to soil calcium cycling. Ponder F, Fleming RL, Berch S, Busse MD, Elioff JD, Hazlett PW, et al. Effects of organic matter removal, soil compaction and vegetation control on 10th year biomass and foliar nutrition: LTSP continent-wide comparisons. For Ecol Manage. 2012;278:35–54. Harrington TB, Slesak RA, Schoenholtz SH. Variation in logging debris cover influences competitor abundance, resource availability, and early growth of planted Douglas-fir. For Ecol Manage. 2013;296:41–52. Holub SM, Terry TA, Harrington CA, Harrison RB, Meade R. Tree growth ten years after residual biomass removal, soil compaction, tillage, and competing vegetation control in a highly-productive Douglas-fir plantation. For Ecol Manage. 2013;305:60–6. Roberts SD, Harrington CA, Terry TA. Harvest residue and competing vegetation affect soil moisture, soil temperature, N availability, and Douglas-fir seedling growth. For Ecol Manage. 2005;205(1–3):333–50. doi:10.1016/j.foreco.2004.10.036. Trottier-Picard A, Thiffault E, DesRochers A, Paré D, Thiffault N, Messier C. Amounts of logging residues affect planting microsites: a manipulative study across northern forest ecosystems. For Ecol Manage. 2014;312:203–15. Proe MF, Griffiths JH, McKay HM. Effect of whole-tree harvesting on microclimate during establishment of second rotation forestry. Agric For Meteorol. 2001;110(2):141–54. doi:10.1016/S0168-1923(01)00285-4. Zabowski D, Java B, Scherer G, Everett RL, Ottmar R. Timber harvesting residue treatment: Part 1. Responses of conifer seedlings, soils and microclimate. For Ecol Manage. 2000;126(1):25–34. doi:10.1016/S0378-1127(99)00081-X. Proe MF, Dutch J. Ameliorative practices for restoring and maintaining impact of whole-tree harvesting on second-rotation growth of Sitka spruce: the first 10 years. Forest Ecology Manage. 1994;66(1):39–54. doi:10.1016/0378-1127(94)90147-3. Egnell G. Is the productivity decline in Norway spruce following whole-tree harvesting in the final felling in boreal Sweden permanent or temporary? For Ecol Manage. 2011;261(1):148–53. doi:10.1016/j.foreco.2010.09.045. Smolander A, Saarsalmi A, Tamminen P. Response of soil nutrient content, organic matter characteristics and growth of pine and spruce seedlings to logging residues. For Ecol Manage. 2015;357:117–25. doi:10.1016/j.foreco.2015.07.019. Helmisaari H-S, Hanssen KH, Jacobson S, Kukkola M, Luiro J, Saarsalmi A, et al. Logging residue removal after thinning in Nordic boreal forests: long-term impact on tree growth. For Ecol Manage. 2011;261(11):1919–27. doi:10.1016/j.foreco.2011.02.015. Akselsson C, Westling O, Sverdrup H, Gundersen P. Nutrient and carbon budgets in forest soils as decision support in sustainable forest management. For Ecol Manage. 2007;238(1–3):167–74. doi:10.1016/j.foreco.2006.10.015. Pyttel PL, Köhn M, Bauhus J. Effects of different harvesting intensities on the macro nutrient pools in aged oak coppice forests. For Ecol Manage. 2015;349:94–105. doi:10.1016/j.foreco.2015.03.037. Johnson DW, West DC, Todd DE, Mann LK. Effects of sawlog vs. whole-tree harvesting on the nitrogen, phosphorus, potassium, and calcium budgets of an upland mixed oak forest. Soil Sci Soc Am J. 1982;46(6):1304–9. doi:10.2136/sssaj1982.03615995004600060036x. Johnson DW, Todd DE. Harvesting effects on long-term changes in nutrient pools of mixed oak forest. Soil Sci Soc Am J. 1998;62(6):1725–35. doi:10.2136/sssaj1998.03615995006200060034x. Aber JD. Why don’t we believe the models? Bull Ecol Soc Am. 1997;78(3):232–3. Thiffault E, Paré D, Dagnault S, Morissette J. Guidelines—establishing permanent plots for monitoring the environmental effects of forest biomass harvesting. Quebec City, QC: Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre; 2011. Thiffault E, Paré D, Brais S, Titus BD. Intensive biomass removals and site productivity in Canada: a review of relevant issues. For Chron. 2010;86(1):36–42. Lequy E, Conil S, Turpault M-P. Impacts of Aeolian dust deposition on European forest sustainability: a review. For Ecol Manage. 2012;267:240–52. doi:10.1016/j.foreco.2011.12.005. Binkley D, Högberg P. Does atmospheric deposition of nitrogen threaten Swedish forests? For Ecol Manage. 1997;92(1–3):119–52. doi:10.1016/S0378-1127(96)03920-5.